ORGANIC
LETTERS
2
009
Vol. 11, No. 16
774-3776
Olefinic-Amide and Olefinic-Lactam
Cyclizations
3
Jie Zhou and Jon D. Rainier*
Department of Chemistry, UniVersity of Utah, 315 South 1400 East,
Salt Lake City, Utah 84112
Received June 25, 2009
ABSTRACT
Olefinic-amide and olefinic-lactam cyclization reactions that result in the generation of cyclic enamides are described.
Small molecules that contain electron-rich olefins (enol ethers
and enamides) are both valuable in their own right and are
here, Bennasar and co-workers have successfully carried out
two-step olefinic-amide cyclizations to enamides. The
6
1
,2
interesting precursors to more elaborate substrates. Over
the past few years we have been interested in the generation
and use of cyclic enol ethers and have recently described
their synthesis from olefinic-ester and olefinic-lactone cy-
clizations using an in situ generated Ti reagent that is
Bennasar chemistry involves the initial conversion of amides
into mixtures of cyclic and acyclic enamides using dimeth-
yltitanocene followed by the conversion of the acyclic
enamides into the corresponding cyclic enamides using the
7
second generation Grubbs catalyst. With a limited number
3
presumed to be a Ti ethylidene. Although the corresponding
of substrates they observed a mixture of cyclic and acyclic
products from the dimethyltitanocene reaction. Representa-
tive of their results was the generation of indole 2 in 40%
overall yield from olefinic-amide 1. In addition to synthesiz-
ing indoles, they also generated dihydroquinolines and
dihydroisoquinolines using this chemistry. More problematic
was the use of the two-step protocol to generate seven-
membered ring substrates as olefin isomerization competed
4
olefinic-amide cyclizations would be synthetically useful,
to the best of our knowledge there are only two reports of
related reactions that employ amides. Takeda has described
Ti(II)-promoted cyclizations of dithianes having pendant
5
amides, and in work more closely related to that proposed
(
1) For representative examples of the use of enol ethers in synthesis,
see: (a) Castro, A. M. M. Chem. ReV. 2004, 104, 2939–3002. (b) Johnson,
H. W. B.; Majumder, U. J. Am. Chem. Soc. 2005, 127, 848–849
2) For representative examples of the use of enamides in synthesis,
.
(6) (a) Bennasar, M. L.; Roca, T.; Monerris, M.; Garc ´ı a-Diaz, D. J. Org.
Chem. 2006, 71, 7028–7034. (b) Bennasar, M.-L.; Roca, T.; Monerris, M.;
Garcia-Diaz, D. Tetrahedron Lett. 2005, 46, 4035–4038.
(
see: (a) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455–3460. (b) Song,
Z.; Lu, T.; Hsung, R. P.; Al-Rashid, Z. F.; Ko, C.; Tang, Y. Angew. Chem.,
Int. Ed. 2007, 46, 4069–4072. (c) Huang, Y.; Iwama, T.; Rawal, V. H.
J. Am. Chem. Soc. 2000, 122, 7843–7844. (d) Harrison, T. J.; Patrick, B. O.;
(7) For examples of RCM cyclizations of enamides generated using non-
carbonyl olefination strategies, see: (a) Kinderman, S. S.; van Maarseveen,
J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, P. J. T. Org. Lett. 2001, 3,
2045–2048. (b) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew.
Chem., Int. Ed. 2002, 41, 4732–4734. (c) Van Otterlo, W. A. L.; Pathak,
R.; de Koning, C. B. Synlett 2003, 1859–1861. (d) Rosillo, M.; Dominguez,
G.; Casarrubios, L.; Amador, U.; P e´ rez,-Castells, J. J. Org. Chem. 2004,
69, 2084–2093. (e) Katz, J. D.; Overman, L. E. Tetrahedron 2004, 60, 9559–
9568. (f) Manzoni, L.; Colombo, M.; Scolastico, C. Tetrahedron Lett. 2004,
45, 2623–2625. (g) Van Ortterlo, W. A. L.; Morgans, G. L.; Khanye, S. D.;
Aderibigbe, B. A. A.; Michael, J. P.; Billing, D. G. Tetrahedron Lett. 2004,
45, 9171–9175. Liu, G.; Tai, W.-Y.; Li, Y.-L.; Nap, F.-J. Tetrahedron Lett.
2006, 47, 3295–3298. (h) Toumi, M.; Couty, F.; Evano, G. J. Org. Chem.
2008, 73, 1270–1281.
Dake, G. R. Org. Lett. 2007, 9, 367–370
3) (a) Iyer, K.; Rainier, J. D. J. Am. Chem. Soc. 2007, 129, 12604–
2605. (b) Rohanna, J.; Rainier, J. D. Org. Lett. 2009, 11, 493–495. (c)
Zhang, Y.; Rainier, J. D. Org. Lett. 2009, 11, 237–239.
4) For reviews on the generation of heterocycles using a combination
.
(
1
(
of metathesis and alkylidenation, see: (a) Hartley, R. C.; Li, J.; Main, C. A.;
McKiernan, G. J. Tetrahedron 2007, 63, 4825–4864. (b) Hartley, R. C.;
Mckiernan, G. J. J. Chem. Soc., Perkin Trans. 1 2002, 2763–2793.
(
5) (a) Takeda, T.; Saito, J.; Tsubouchi, A. Tetrahedron Lett. 2003, 44,
5
571–5574. (b) Takeda, T.; Yatsumonji, Y.; Tsubouchi, A. Tetrahedron
Lett. 2005, 46, 3157–3160.
10.1021/ol901448n CCC: $40.75
Published on Web 07/23/2009
2009 American Chemical Society