Journal of the American Chemical Society
Page 8 of 10
McLaughlin, M. E.; Che, J.; Carey, T. E.; Vanasse, G.; Harris, J. L.
R. D.; Rocke, B. N.; Shavnya, A.; Blakemore, D. C.; Willis, M. C.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Targeting Wnt-Driven Cancer through the Inhibition of Porcupine by
LGK974. PNAS 2013, 110, 20224–20229. (b) Roecker, A. J.; Mercer,
S. P.; Schreier, J. D.; Cox, C. D.; Fraley, M. E.; Steen, J. T.; Lemaire,
W.; Bruno, J. G.; Harrell, C. M.; Garson, S. L.; Gotter, A. L.; Fox, S.
V.; Stevens, J.; Tannenbaum, P. L.; Prueksaritanont, T.; Cabalu, T.
D.; Cui, D.; Stellabott, J.; Hartman, G. D.; Young, S. D.; Winrow, C.
J.; Renger, J. J.; Coleman, P. J. Discovery of 5′′-Chloro-N-[(5,6-
Dimethoxypyridin-2-Yl)Methyl]-2,2′:5′,3′′-Terpyridine-3′-
Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in
Palladium-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc.
2018, 140, 15916–15923.
(10) Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.;
Paton, R. S.; McNally, A. Heterobiaryl Synthesis by Contractive C–C
Coupling via P(V) Intermediates. Science 2018, 362, 799–804.
(11) (a) Mann, F. G.; Watson, J. Conditions of Salt Formation in
Polyamines and Kindred Compounds. Salt Formation in the Tertiary
2-Pyridylamines, Phosphines, and Arsines. J. Org. Chem. 1948, 13,
502–531. (b) Newkome, G. R.; Hager, D. C. A New Contractive
Coupling Procedure. Convenient Phosphorus Expulsion Reaction. J.
Am. Chem. Soc. 1978, 100, 5567–5568. (c) Uchida, Y.; Kozawa, H.
Formation of 2,2′-Bipyridyl by Ligand Coupling on the Phosphorus
Atom. Tetrahedron Letters 1989, 30, 6365–6368. (d) Uchida, Y.;
Onoue, K.; Tada, N.; Nagao, F.; Kozawa, H.; Oae, S. Reactions of 2-
Pyridyl Substituted Phosphine Oxides and Phosphonium Salts with
Organometallic Reagents and in Aqueous Media. Heteroatom
Chemistry 1990, 1, 295–306.
Carboxamide (MK-1064): A Selective Orexin 2 Receptor Antagonist
(2-SORA) for the Treatment of Insomnia. ChemMedChem 2014, 9,
311–322. (c) Fu, P.; Wang, S.; Hong, K.; Li, X.; Liu, P.; Wang, Y.;
Zhu, W. Cytotoxic Bipyridines from the Marine-Derived
Actinomycete Actinoalloteichus Cyanogriseus WH1-2216-6. J. Nat.
Prod. 2011, 74, 1751–1756. (d) Fletcher, N. C. Chiral 2,2′-
Bipyridines: Ligands for Asymmetric Induction. J. Chem. Soc.,
Perkin Trans. 1 2002, 0, 1831–1842. (e) Kaes, C.; Katz, A.; Hosseini,
M. W. Bipyridine: The Most Widely Used Ligand. A Review of
Molecules Comprising at Least Two 2,2’-Bipyridine Units. Chem.
Rev. 2000, 100, 3553–3590. (f) Roberts, J. M.; Fini, B. M.; Sarjeant,
A. A.; Farha, O. K.; Hupp, J. T.; Scheidt, K. A. Urea Metal–Organic
Frameworks as Effective and Size-Selective Hydrogen-Bond
Catalysts. J. Am. Chem. Soc. 2012, 134, 3334–3337. (g) Suh, M. P.;
Cheon, Y. E.; Lee, E. Y. Syntheses and Functions of Porous
Metallosupramolecular Networks. Coordination Chemistry Reviews
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(12) We have found that N-aryl amides are generally compatible
2
with Tf O whereas N-alkyl amides can react competitively with
azines.
(13) Barbe, G.; Charette, A.B., Highly Chemoselective Metal-Free
Reduction of Tertiary Amides. J. Am. Chem. Soc. 2008, 130, 1819.
(14) (a) Hilton, M. C.; Dolewski, R. D.; McNally, A. Selective
Functionalization of Pyridines via Heterocyclic Phosphonium Salts. J.
Am. Chem. Soc. 2016, 138, 13806–13809. (b) Dolewski, R. D.;
Fricke, P. J.; McNally, A. Site-Selective Switching Strategies to
Functionalize Polyazines. J. Am. Chem. Soc. 2018, 140, 8020–8026.
(15) Pyridyl phosphines have been synthesized previously through
2
008, 252, 1007–1026. (h) Corma, A.; García, H.; Llabrés i Xamena,
F. X. Engineering Metal-Organic Frameworks for Heterogeneous
Catalysis. Chem. Rev. 2010, 110, 4606–4655. (i) Newkome, G. R.;
Patri, A. K.; Holder, E.; Schubert, U. S. Synthesis of 2,2′-Bipyridines:
Versatile Building Blocks for Sexy Architectures and Functional
Nanomaterials. European Journal of Organic Chemistry 2004, 2004,
basic S Ar conditions or metal-catalyzed conditions. (a) Hintermann,
N
2
35–254.
2) Campeau, L.-C.; Fagnou, K. Applications of and Alternatives to
L.; Dang, T. T.; Labonne, A.; Kribber, T.; Xiao, L.; Naumov, P. The
(
AZARYPHOS Family of Ligands for Ambifunctional Catalysis:
Syntheses and Use in Ruthenium-Catalyzed Anti-Markovnikov
Hydration of Terminal Alkynes. Chem. Eur. J. 2009, 15, 7167–7179.
(b) Newkome, G. R. Pyridylphosphines. Chem. Rev. 1993, 93, 2067–
2089. (c) Newkome, G. R.; Hager, D. C. Chemistry of Heterocyclic
π-Electron-Deficient Azine Organometallics in Metal Catalyzed
Cross-Coupling Reactions. Chem. Soc. Rev. 2007, 36, 1058–1068.
(3) (a) Colombe, J. R.; Bernhardt, S.; Stathakis, C.; Buchwald, S.
L.; Knochel, P. Synthesis of Solid 2-Pyridylzinc Reagents and Their
Application in Negishi Reactions. Org. Lett. 2013, 15, 5754–5757. (b)
Yamamoto, Y.; Azuma, Y.; Mitoh, H. General Method for Synthesis
of Bipyridines: Palladium Catalyzed Cross-Coupling Reaction of
Trimethylstannyl-Pyridines with Bromopyridines. Synthesis 1986,
Compounds.
27.
An
Improved
Preparation
of
Pyridyldiphenylphosphines. J. Org. Chem. 1978, 43, 947–949. (d)
Yang, J.; Chen, T.; Han, L.-B. C–P Bond-Forming Reactions via C–
O/P–H Cross-Coupling Catalyzed by Nickel. J. Am. Chem. Soc. 2015,
137, 1782–1785.
(16) Terrier, F., Ed. In Modern Nucleophilic Aromatic
Substitution; Wiley-VCH: Weinheim, Germany, 2013.
(17) Mečiarová, M.; Toma, Š.; Loupy, A.; Horváth, B. Synthesis of
Phosphonium Salts—Phosphine Structure and Inorganic Salts Effects.
Phosphorus, Sulfur, and Silicon and the Related Elements 2007, 183,
21–33.
(18) (a) Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J.
Multimetallic Catalysed Cross-Coupling of Aryl Bromides with Aryl
Triflates. Nature 2015, 524, 454–457. (b) Everson, D. A.; Weix, D. J.
Cross-Electrophile Coupling: Principles of Reactivity and Selectivity.
J. Org. Chem. 2014, 79, 4793–4798.
(19) Further details on guidelines and limitations are show in the
Supporting Information.
(20) Ren, W.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Palladium-Catalyzed
Suzuki–Miyaura Cross-Coupling Reaction of Potassium 2-Pyridyl
Trifluoroborate with Aryl (Heteroaryl) Halides. Tetrahedron 2012,
68, 1351–1358.
(21) Potassium 2-Pyridyl trifluoroborates have been previously
noted to perform poorly under Suzuki cross-coupling reaction
conditions; Molander, G. A.; Biolatto, B. Palladium-Catalyzed
Suzuki−Miyaura Cross-Coupling Reactions of Potassium Aryl- and
Heteroaryltrifluoroborates. J. Org. Chem. 2003, 68, 4302–4314.
(22) Kudo, N.; Perseghini, M.; Fu, G. C. A Versatile Method for
Suzuki Cross-Coupling Reactions of Nitrogen Heterocycles. Angew.
Chem. Int. Ed. 2006, 45, 1282–1284.
1
986, 564–565. (c) Blakemore, D. C.; Marples, L. A. Palladium(0)-
Catalysed Cross-Coupling of 2-Trimethylsilylpyridine with Aryl
Halides. Tetrahedron Letters 2011, 52, 4192–4195.
(4) Brown, D. G.; Boström, J. Analysis of Past and Present
Synthetic Methodologies on Medicinal Chemistry: Where Have All
the New Reactions Gone? J. Med. Chem. 2016, 59, 4443–4458.
(5) A Scifinder search of the CAS database for pyridyl boronic
acids (all isomers) resulted in 2686 commercially available versus
747322 commercially available chloropyridines.
(6) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E.
J.;
Lloyd-Jones, G. C. Base-Catalyzed Aryl-B(OH)
2
Protodeboronation Revisited: From Concerted Proton Transfer to
Liberation of a Transient Aryl Anion. J. Am. Chem. Soc. 2017, 139,
13156–13165.
(7) (a) J.-P. Finet, in Ligand Coupling Reactions with
Heteroaromatic Compounds, Vol. 18 (Pergamon, 1998), chap. 4. (b)
Oae, S.; Uchida, Y. Ligand-Coupling Reactions of Hypervalent
Species. Acc. Chem. Res. 1991, 24, 202–208.
(8) (a) Molander, G. A.; Canturk, B.; Kennedy, L. E. Scope of the
Suzuki−Miyaura Cross-Coupling Reactions of Potassium
Heteroaryltrifluoroborates. J. Org. Chem. 2009, 74, 973–980. (b)
Knapp, D. M.; Gillis, E. P.; Burke, M. D. A General Solution for
Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-
Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 6961–6963.
(c) Lennox, A. J. J.; Lloyd-Jones, G. C. Selection of Boron Reagents
for Suzuki–Miyaura Coupling. Chem. Soc. Rev. 2013, 43, 412–443.
(9) (a) Markovic, T.; Rocke, B. N.; Blakemore, D. C.; Mascitti, V.;
(23) Other sets of Suzuki cross-coupling conditions gave undesired
oxidation of the heteroaryl phosphine or products resulting from
insertion into the C–P bond.
Willis, M. C. Pyridine Sulfinates as General Nucleophilic Coupling
Partners in Palladium-Catalyzed Cross-Coupling Reactions with Aryl
Halides. Chem. Sci. 2017, 8, 4437–4442. (b) Markovic, T.; Murray, P.
ACS Paragon Plus Environment