.
A. de Fa´tima, R. A. Pilli / Tetrahedron Letters 44 (2003) 8721–8724
8723
In this work, we carried out the total syntheses of
(R)-argentilactone (1) in five steps and 25% yield from
1-heptyne and (R)-goniothalamin (2) in three steps and
61% overall yield from trans-cinnamaldehyde. This
concise and efficient approach compares favorably with
the more efficient approaches so far reported in the
literature for these natural products16a,17a and illustrates
the utility of the asymmetric catalytic allylation proto-
col developed by Maruoka and co-workers to provide
rapid access to chiral 6-substituted pyran-2-ones. The
extension of the methodology described herein to syn-
thesis of other natural pyranones is underway in our
laboratory.
12. Fu, X.; Sevenet, T.; Hamid, A.; Hadi, A.; Remy, F.; Pais,
M. Phytochemistry 1993, 33, 1272–1274.
13. Hamamoto, T.; Gunji, S.; Tsuji, H.; Beppu, T. J.
Antibiot. 1983, 36, 639–645.
14. Schummer, D.; Gerth, K.; Reichenbach, H.; Ho¨fle, G.
Liebigs Ann. 1995, 4, 685–688.
15. Juliawaty, L. D.; Kitajima, M.; Takayama, H.; Achmad,
S. A.; Aimi, N. Phytochemistry 2000, 54, 989–993.
16. For more recently synthesis of (R)-argentilactone, see: (a)
Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. C. J.
Ind. Chem. Soc. 1999, 76, 739–742; (b) Saeed, M.; Ilg, T.;
Schick, M.; Abbas, M.; Voelter, W. Tetrahedron Lett.
2001, 42, 7401–7403; (c) Hansen, T. V. Tetrahedron:
Asymmetry 2002, 13, 547–550. For other synthesis of
(R)-argentilactone from chiral starting material or
through asymmetric reduction using enzymes or microor-
ganisms, see: (d) O’Connor, B.; Just, G. Tetrahedron Lett.
1986, 27, 5201–5202; (e) Rahman, S. S.; Wakefield, B. J.;
Roberts, S. M.; Dowle, M. D. J. Chem. Soc., Chem.
Commun. 1989, 303–304; (f) Carretero, J. C.; Ghosez, L.
Tetrahedron Lett. 1988, 29, 2059–2062.
17. For more recently synthesis of (R)-goniothalamin, see:
(a) Ramachandran, P. V.; Reddy, M. V. R.; Brown, H.
C. Tetrahedron Lett. 2000, 41, 583–586; (b) Peng, X. S.;
Li, A. P.; Shen, H.; Wu, T. X.; Pan, X. F. J. Chem. Res.
2002, 7, 330–332; (c) Tsubuki, M.; Honda, T. Heterocy-
cles 1993, 35, 281–288; (d) Fa´tima, A.; Pilli, R. A.
Arkivoc. 2003, 10, 118–126. For other synthesis of (R)-
goniothalamin from chiral starting material or through
asymmetric reduction using enzymes or microorganisms,
see: (e) Bennett, F.; Knight, D. W. Tetrahedron Lett.
1988, 29, 4625–4628; (f) Fuganti, C.; Pedrocchi-Fantoni,
G.; Sarra, A.; Servi, S. Tetrahedron: Asymmetry 1994, 5,
1135–1138; (g) Henkel, B.; Kunath, A. Schick, H. Liebigs
Ann. Chem. 1992, 809–811; (h) Bennett, F.; Knight, D.
W.; Fenton, G. J. Chem. Soc., Perkin. Trans. 1 1991,
519–523.
Acknowledgements
The authors would like to thank FAPESP (Fundac¸a˜o
de Amparo a Pesquisa no Estado de Sa˜o Paulo) for
financial support and fellowships (A.F.) and CNPq
(Conselho Nacional de Desenvolvimento Cient´ıfico e
Tecnolo´gico) for fellowship (R.A.P.).
References
1. (a) Priestap, H. A.; Bonafede, J. D.; Ru´veda, E. A.
Phytochemistry 1977, 16, 1579–1582; (b) Priestap, H. A.;
van Baren, C. M.; Lira, P. D. L.; Coussio, J. D.; Ban-
doni, A. L. Phytochemistry 2003, 63, 221–225.
2. Matsuda, M.; Endo, Y.; Fushiya, S.; Endo, T.; Nozoe, S.
Heterocycles 1994, 38, 1229–1232.
3. Waechter, A. I.; Ferreira, M. E.; Fournet, A.; Arias, A.
R.; Nakayama, H.; Torres, S.; Hocquemiller, R.; Cave´,
A. Planta Med. 1997, 63, 433–435.
4. Hlubucek, J. R.; Robertson, A. V. Aust. J. Chem. 1967,
20, 2199.
5. Cavalheiro, A. J.; Yoshida, M. Phytochemistry 2000, 53,
811–819.
18. (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983,
105, 2092–2093; (b) Brown, H. C.; Ramachandran, P. V.
J. Organomet. Chem. 1995, 500, 1; (c) Ramachandran, P.
V. Aldrichimica Acta 2002, 35, 23–35.
6. Kabir, K. E.; Khan, A. R.; Mosaddik, M. A. J. Appl.
19. Quitschalle, M.; Christmann, M.; Bhatt, U.; Kalesse, M.
Ent. 2003, 127, 112–115.
Tetrahedron Lett. 2001, 42, 1263–1265.
7. Goniothalamin was also isolated from: (a) Goniothalamus
giganteus: El-Zayat, A. E.; Ferrigni, N. R.; McCloud, T.
G.; McKenzie, A. T.; Byrn, S. R.; Cassady, J. M.; Chang,
C.; McLauglin, J. L. Tetrahedron Lett. 1985, 26, 955–956;
(b) Goniothalamus uvaroids: Ahmad, F. B.; Tukol, W. A.;
Omar, S.; Sharif, A. M. Phytochemistry 1991, 30, 2430–
2431; (c) Goniothalamus malayanus, G. andersonni, G.
macrophyllus and G. velutinus: Jewers, K.; Blunden, G.;
Wetchapinan, S.; Dougan, J.; Manchada, A. H.; Davis, J.
B.; Kyi, A. Phytochemistry 1972, 11, 2025–2030; (d)
Goniothalamus dolichocarpus: Goh, S. H.; Ee, G. C. L.;
Chuah, C. H.; Wei, C. Aust. J. Chem. 1995, 48, 199–205.
8. Ali, A. M.; Mackeen, M. M.; Hamid, M.; Aun, Q. B.;
Zauyah, H.; Azimathol, H. L. P.; Kawazu, K. Planta
Med. 1997, 63, 81–83.
20. Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2794.
21. (a) Kii, S.; Maruoka, K. Tetrahedron Lett. 2001, 42,
1935–1939; (b) Hanawa, H.; Kii, S.; Maruoka, K. Adv.
Synth. Catal. 2001, 343, 57–60.
22. Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem.
Soc. 2003, 125, 1708–1709.
23. Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L.
J. Am. Chem. Soc. 2002, 124, 4956–4957.
24. For an excellent recent review, see: Grubbs, R. H.;
Chang, S. Tetrahedron 1998, 54, 4413–4450 and refer-
ences cited therein.
25. Representative analytical data for (R)-argentilactone: IR
(film): 3020, 2956, 2927, 2858, 1722, 1466, 1381, 1244,
1149, 1055, 1022, 816 cm−1; 1H NMR (300 MHz, CDCl3):
l 6.90 (ddd, 1H, J=9.7, 5.5, 3.1 Hz), 6.05 (ddd, 1H,
J=9.7, 2.2 and 1.4 Hz), 5.71–5.52 (m, 2H), 5.22 (ddd,
1H, J=10.2, 8.4 and 4.9 Hz), 2.49–2.30 (m, 2H), 2.17–
2.03 (m, 2H), 1.46–1.26 (m, 6H), 0.90 (t, 3H, J=7.0 Hz);
13C NMR (125 MHz, CDCl3): l 163.9, 144.6, 135.5,
126.3, 121.5, 73.9, 31.5, 29.9, 29.1, 27.8, 22.5, 14.1. [h]D=
−22 (c 2.2, EtOH), {lit.,4 [h]D=−21.1 (c 2.3, EtOH)}.
9. Hawariah, W.; Stanslas, J. In Vivo 1998, 12, 403–410.
10. Inayat-Hussain, S. H.; Osman, A. B.; Din, L. B.; Ali, A.
M.; Snowden, R. T.; MacFarlane, M.; Cain, K. FEBS
Lett. 1999, 456, 379–383.
11. Goldsworthy, T. L.; Fransson-Steen, R. L.; Moser, G. J.
CIIT Act. 1995, 15, 1–10.