Journal of Medicinal Chemistry
ARTICLE
(
9) Strebhardt, K. Multifaceted polo-like kinases: drug targets and
antitargets for cancer therapy. Nat. Rev. Drug Discovery 2010, 9, 643–660.
10) Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.;
(24) Singh, J.; Petter, R. C.; Kluge, A. F. Targeted covalent drugs of
the kinase family. Curr. Opin. Chem. Biol. 2010, 14, 475–480.
(25) Zhou, W.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D.; Capelletti,
M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.;
Wong, K. K.; Eck, M. J.; Gray, N. S.; J €a nne, P. A. Novel mutant-selective
EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070–
1074.
(
Walter, R.; Heckel, A.; van Meel, J.; Rieder, C. L.; Peters, J.-M. The small
molecule Hesperadin reveals a role for Aurora B in correcting
kinetochoreꢀmicrotubule attachment and in maintaining the spindle
assembly checkpoint. J. Cell Biol. 2003, 161, 281–294.
(
11) Tighe, A.; Staples, O.; Taylor, S. Mps1 kinase activity restrains
(26) Leproult, E.; Barluenga, S.; Moras, D.; Wurtz, J. M.; Winssinger,
N. Cysteine mapping in conformationally distinct kinase nucleotide
binding sites: application to the design of selective covalent inhibitors.
J. Med. Chem. 2011, 54, 1347–1355.
anaphase during an unperturbed mitosis and targets Mad2 to kineto-
chores. J. Cell Biol. 2008, 181, 893–901.
(12) Kwiatkowski, N.; Jelluma, N.; Filippakopoulos, P.; Soundararajan,
M.; Manak, M. S.; Kwon, M.; Choi, H. G.; Sim, T.; Deveraux, Q. L.;
Rottmann, S.; Pellman, D.; Shah, J. V.; Kops, G. J.; Knapp, S.; Gray, N. S.
Small-molecule kinase inhibitors provide insight into Mps1 cell cycle
function. Nat. Chem. Biol. 2010, 6, 359–368.
(27) Zhang, J.; Yang, P. L.; Gray, N. S. Targeting cancer with small
molecule kinase inhibitors. Nat. Rev. Cancer 2009, 9, 28–39.
(28) Honigberg, L. A.; Smith, A. M.; Sirisawad, M.; Verner, E.;
Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D. H.; Miller, R. A.; Buggy,
J. J. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell
activation and is efficacious in models of autoimmune disease and B-cell
malignancy. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 13075–13080.
(29) Cohen, M. S.; Zhang, C.; Shokat, K. M.; Taunton, J. Structural
bioinformatics-based design of selective, irreversible kinase inhibitors.
Science 2005, 308, 1318–1321.
(13) Kokuryo, T.; Senga, T.; Yokoyama, Y.; Nagino, M.; Nimura, Y.;
Hamaguchi, M. Nek2 as an effective target for inhibition of tumorigenic
growth and peritoneal dissemination of cholangiocarcinoma. Cancer Res.
2
007, 67, 9637–9642.
14) Tsunoda, N.; Kokuryo, T.; Oda, K.; Senga, T.; Yokoyama, Y.;
(
Nagino, M.; Nimura, Y.; Hamaguchi, M. Nek2 as a novel molecular
target for the treatment of breast carcinoma. Cancer Sci. 2009,
(30) Cohen, M. S.; Hadjivassiliou, H.; Taunton, J. A clickable
inhibitor reveals context-dependent autoactivation of p90 RSK. Nat.
Chem. Biol. 2007, 3, 156–160.
100, 111–116.
(15) Zeng, X.; Shaikh, F. Y.; Harrison, M. K.; Adon, A. M.; Trimboli,
A. J.; Carroll, K. A.; Sharma, N.; Timmers, C.; Chodosh, L. A.; Leone, G.;
Saavedra, H. I. The Ras oncogene signals centrosome amplification in
mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene
(31) Zhou, W.; Hur, W.; McDermott, U.; Dutt, A.; Xian, W.; Ficarro,
S. B.; Zhang, J.; Sharma, S. V.; Brugge, J.; Meyerson, M.; Settleman, J.;
Gray, N. S. A structure-guided approach to creating covalent FGFR
inhibitors. Chem. Biol. 2010, 17, 285–295.
2
010, 29, 5103–5112.
(
16) Hayward, D. G.; Clarke, R. B.; Faragher, A. J.; Pillai, M. R.;
(32) Doehn, U.; Hauge, C.; Frank, S. R.; Jensen, C. J.; Duda, K.;
Nielsen, J. V.; Cohen, M. S.; Johansen, J. V.; Winther, B. R.; Lund, L. R.;
Winther, O.; Taunton, J.; Hansen, S. H.; Fr €o din, M. RSK is a principal
effector of the RAS-ERK pathway for eliciting a coordinate promotile/
invasive gene program and phenotype in epithelial cells. Mol. Cell 2009,
35, 511–22.
(33) Moshinsky, D. J.; Bellamacina, C. R.; Boisvert, D. C.; Huang, P.;
Hui, T.; Jancarik, J.; Kim, S. H.; Rice, A. G. SU9516: biochemical analysis
of Cdk inhibition and crystal structure in complex with Cdk2. Biochem.
Biophys. Res. Commun. 2003, 310, 1026–1031.
Hagan, I. M.; Fry, A. M. The centrosomal kinase Nek2 displays elevated
levels of protein expression in human breast cancer. Cancer Res. 2004,
4, 7370–7376.
(
S.; Fry, A. M.; Geremia, R.; Sette, C. Increased expression and nuclear
localization of the centrosomal kinase Nek2 in human testicular
seminomas. J. Pathol. 2009, 217, 431–441.
6
17) Barbagallo, F.; Paronetto, M. P.; Franco, R.; Chieffi, P.; Dolci,
(
18) Andr ꢀe asson, U.; Dictor, M.; Jerkeman, M.; Berglund, M.;
Sundstr €o m, C.; Linderoth, J.; Rosenquist, R.; Borrebaeck, C. A.; Ek, S.
Identification of molecular targets associated with transformed diffuse
large B cell lymphoma using highly purified tumor cells. Am. J. Hematol.
(34) Vassilev, L. T.; Tovar, C.; Chen, S.; Knezevic, D.; Zhao, X.; Sun,
H.; Heimbrook, D. C.; Chen, L. Selective small-molecule inhibitor
reveals critical mitotic functions of human Cdk1. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 10660–10665.
2
009, 84, 803–808.
(
19) Whelligan, D. K.; Solanki, S.; Taylor, D.; Thomson, D. W.;
Cheung, K. M.; Boxall, K.; Mas-Droux, C.; Barillari, C.; Burns, S.;
Grummitt, C. G.; Collins, I.; van Montfort, R. L.; Aherne, G. W.; Bayliss,
R.; Hoelder, S. Aminopyrazine inhibitors binding to an unusual inactive
conformation of the mitotic kinase Nek2: SAR and structural character-
ization. J. Med. Chem. 2010, 53, 7682–7698.
(35) Potapova, T. A.; Daum, J. R.; Pittman, B .D.; Hudson, J. R.;
Jones, T. N.; Satinover, D. L.; Stukenberg, P. T.; Gorbsky, G. J. The
reversibility of mitotic exit in vertebrate cells. Nature 2006, 440, 954–
958.
(36) Fabian, M. A.; Biggs, W. H.; Treiber, D. K.; Atteridge, C. E.;
Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen,
P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.;
Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; L ꢀe lias, J. M.; Mehta,
S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.;
Zarrinkar, P. P.; Lockhart, D. J. A small molecule-kinase interaction map
for clinical kinase inhibitors. Nat. Biotechnol. 2005, 23, 329–336.
(37) Fu, G.; Ding, X.; Yuan, K.; Aikhionbare, F.; Yao, J.; Cai, X.;
Jiang, K.; Yao, X. Phosphorylation of human Sgo1 by NEK2A is essential
for chromosome congression in mitosis. Cell Res. 2007, 17, 608–618.
(38) Faragher, A. J.; Fry, A. M. Nek2A kinase stimulates centrosome
disjunction and is required for formation of bipolar mitotic spindles. Mol.
Biol. Cell 2003, 14, 2876–2889.
(20) Emmitte, K. A.; Adjabeng, G. M.; Andrews, C. W.; Alberti, J. G.;
Bambal, R.; Chamberlain, S. D.; Davis-Ward, R. G.; Dickson, H. D.;
Hassler, D. F.; Hornberger, K. R.; Jackson, J. R.; Kuntz, K. W.; Lansing,
T. J.; Mook, R. A., Jr.; Nailor, K. E.; Pobanz, M. A.; Smith, S. C.; Sung,
C. M.; Cheung, M. Design of potent thiophene inhibitors of polo-like
kinase 1 with improved solubility and reduced protein binding. Bioorg.
Med. Chem. Lett. 2009, 19, 1694–1697.
(21) Hayward, D. G.; Newbatt, Y.; Pickard, L.; Byrne, E.; Mao, G.;
Burns, S.; Sahota, N. K.; Workman, P.; Collins, I.; Aherne, W.; Fry, A. M.
Identification by high-throughput screening of viridin analogs as bio-
chemical and cell-based inhibitors of the cell cycle-regulated Nek2
kinase. J. Biomol. Screening 2010, 15, 918–927.
(
22) Rellos, P.; Ivins, F. J.; Baxter, J. E.; Pike, A.; Nott, T. J.;
(39) Peters, U.; Cherian, J.; Kim, J. H.; Kwok, B. H.; Kapoor, T. M.
Probing cell-division phenotype space and Polo-like kinase function
using small molecules. Nat. Chem. Biol. 2006, 2, 618–626.
(40) McInnes, C.; Mazumdar, A.; Mezna, M.; Meades, C.; Midgley,
C.; Scaerou, F.; Carpenter, L.; Mackenzie, M.; Taylor, P.; Walkinshaw,
M.; Fischer, P. M.; Glover, D. Inhibitors of Polo-like kinase reveal roles
in spindle-pole maintenance. Nat. Chem. Biol. 2006, 2, 608–617.
(41) L ꢀe n ꢀa rt, P.; Petronczki, M.; Steegmaier, M.; Di Fiore, B.;
Lipp, J. J.; Hoffmann, M.; Rettig, W. J.; Kraut, N.; Peters, J. M. The
Parkinson, D.-M.; Das, S.; Howell, S.; Fedorov, O.; Shen, Q. Y.; Fry,
A. M.; Knapp, S.; Smerdon, S. J. Structure and regulation of the human
Nek2 centrosomal kinase. J. Biol. Chem. 2006, 282, 6833–6842.
(23) Singh, J.; Dobrusin, E. M.; Fry, D. W.; Haske, T.; Whitty, A.;
McNamara, D. J. Structure-based design of a potent, selective, and
irreversible inhibitor of the catalytic domain of the ErbB receptor
subfamily of protein tyrosine kinases. J. Med. Chem. 1997, 40, 1130–
1
135.
4
145
dx.doi.org/10.1021/jm200222m |J. Med. Chem. 2011, 54, 4133–4146