S.-r. Ban, H.-y. Xie, X.-x. Zhu, Q.-s. Li
SHORT COMMUNICATION
Gong, Prog. Chem. 2010, 22, 1362; f) A. Studer, D. P. Curran,
Angew. Chem. Int. Ed. 2011, 50, 5018–5022.
133.98, 131.52, 131.17, 128.23, 126.90, 122.58, 57.94, 46.51, 44.23,
30.00, 25.38 ppm. IR (KBr): ν = 3442, 3207, 2949, 2858, 1724,
˜
[3]
[4]
a) C. H. Luo, D. M. Du, Synthesis-Stuttgart 2011, 1968–1973;
b) N. Mase, C. F. Barbas, Org. Biomol. Chem. 2010, 8, 4043–
4050; c) A. Sharma, N. Sharma, R. Kumar, U. K. Sharma,
A. K. Sinha, Chem. Commun. 2009, 5299–5301; d) D. Gonza-
lez-Cruz, D. Tejedor, P. de Armas, E. Q. Morales, F. Garcia-
Tellado, Chem. Commun. 2006, 2798–2800; e) A. P. Brogan,
T. J. Dickerson, K. D. Janda, Angew. Chem. 2006, 118, 8278;
Angew. Chem. Int. Ed. 2006, 45, 8100–8102.
For selected enamine-catalyzed reactions and for a review, seea)
C. Liu, Q. Zhu, K. W. Huang, Y. X. Lu, Org. Lett. 2011, 13,
2638; b) M. Wiesner, G. Upert, G. Angelici, H. Wennemers, J.
Am. Chem. Soc. 2010, 132, 6–7; c) T. Kano, K. Maruoka,
Chem. Commun. 2008, 5465–5473; d) K. Arnold, A. S. Bats-
anov, B. Davies, C. Grosjean, T. Schutz, A. Whiting, K. Za-
watzky, Chem. Commun. 2008, 3879–3881; e) S. Mukherjee,
J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471–
5569.
For selected imine-catalyzed reactions, seea) P. Galzerano, F.
Pesciaioli, A. Mazzanti, G. Bartoli, P. Melchiorre, Angew.
Chem. 2009, 121, 8032; Angew. Chem. Int. Ed. 2009, 48, 7892–
7894; b) J. Franzén, A. Fisher, Angew. Chem. 2009, 121, 801;
Angew. Chem. Int. Ed. 2009, 48, 787–791; c) X. J. Lu, L. Deng,
Angew. Chem. 2008, 120, 7824; Angew. Chem. Int. Ed. 2008, 47,
7710–7713; d) Y. Hayashi, S. Samanta, H. Gotoh, H. Ishikawa,
Angew. Chem. 2008, 120, 6736; Angew. Chem. Int. Ed. 2008,
47, 6634–6637; e) S. Cabrera, E. Reyes, J. Aleman, A. Milelli,
S. Kobbelgaard, K. A. Jorgensen, J. Am. Chem. Soc. 2008, 130,
12031–12037; f) S. France, M. H. Shah, A. Weatherwax, H.
Wack, J. P. Roth, T. Lectka, J. Am. Chem. Soc. 2005, 127, 1206–
1215.
For selected hydrogen-bond activated reactions, seea) Y.
Zhang, Y. K. Liu, T. R. Kang, Z. K. Hu, Y. C. Chen, J. Am.
Chem. Soc. 2008, 130, 2456–2457; b) E. A. Peterson, E. N. Ja-
cobsen, Angew. Chem. 2009, 121, 6446; Angew. Chem. Int. Ed.
2009, 48, 6328–6331; c) C. K. De, E. G. Klauber, D. Seidel, J.
Am. Chem. Soc. 2009, 131, 17060–17061; d) T. Bui, S. Syed,
C. F. Barbas, J. Am. Chem. Soc. 2009, 131, 8758–8759; e) C.
Uyeda, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 9228–
9229; f) S. E. Reisman, A. G. Doyle, E. N. Jacobsen, J. Am.
Chem. Soc. 2008, 130, 7198–7199; g) M. Ganesh, D. Seidel, J.
Am. Chem. Soc. 2008, 130, 16464–16465.
1666, 1645, 1624, 1589, 1436, 1379, 1357, 1323, 1236, 1165, 1097,
781 cm–1. HRMS: calcd. for C17H17N2O2 281.12845 [M + H]+;
found 281.12832.
N-{[(S)-Pyrrolidin-2-yl]methyl}-3,4,5,6-tetrachlorophthalimide (5c):
The reaction mixture of tetrachlorophthalic anhydride (286 mg,
1.0 mmol), dicyclohexylcarbodiimide (DCC, 200 mg, 1 mmol), and
(S)-tert-butyl 2-(aminomethyl) pyrrolidine-1-carboxylate (210 mg,
1.04 mmol) in dried THF (10 mL) was heated at reflux for 12 h,
and the mixture was separated directly by silica gel column
chromatography to give a white solid, which was then dissolved in
a mixture of concentrated HCl (2 mL) and EtOAc (10 mL) and
stirred for 4 h at room temperature. The pH of the mixture was
adjusted to about 8 with saturated NaHCO3, after which extraction
with dichloromethane was carried out (3ϫ20 mL). The solution
was dried with anhydrous Na2SO4. After removal of the solvent,
the product was obtained as a white solid (94.2 mg, 25.6% yield).
M.p. decomposed at 280 °C. [α]2D0 = +8.7 (c = 0.5, CH2Cl2). 1H
NMR (400 MHz, CDCl3): δ = 4.68–2.86 (m, 6 H), 2.23–1.44 (m, 4
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 163.70, 133.97, 129.67,
[5]
127.80, 53.45, 48.95, 40.90, 30.96, 23.49 ppm. IR (KBr): ν = 3465,
˜
3227, 2941, 2858, 1774, 1717, 1681, 1651, 1633, 1435, 1398, 1371,
1298, 1200, 1060, 737 cm–1. HRMS: calcd. for C13H11Cl4N2O2
366.95691 [M + H]+; found 366.95843.
General Procedure for the Asymmetric Michael Addition of Ketones
to Nitroalkenes Catalyzed by 5: A solution of the catalyst 5
(0.013 mmol) and cyclohexanone (0.1 mL, 0.1 mmol) in toluene
(0.2 mL) was stirred at room temperature for 30 min. 2,4-Dichlo-
ridebenzoic acid (2.5 mg, 0.013 mmol) was then added, and the re-
action mixture was stirred for 15 min. To the resulting mixture was
added nitroalkene (0.13 mmol) at the required temperature. After
the reaction was completed (monitored by TLC), the mixture was
purified by column chromatography on silica gel (200–300 mesh,
petroleum ether/ethyl acetate = 10:1) to afford the product.
[6]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details for the products of the catalytic asym-
metric Michael addition reactions are presented. 1H and 13C NMR
spectra, IR spectra and mass spectra are also given for all the com-
pounds.
[7]
For selected carbene-catalyzed reactions, seea) I. Piel, M. Stein-
metz, K. Hirano, R. Frohlich, S. Grimme, F. Glorius, Angew.
Chem. Int. Ed. 2011, 50, 4983–4987; b) Y. R. Zhang, H. Lv, D.
Zhou, S. Ye, Chem. Eur. J. 2008, 14, 8473–8476; c) Y. Suzuki,
A. Md, T. Tanoi, N. Nomura, M. Sato, Tetrahedron 2011, 67,
4710–4715; d) J. Mahatthananchai, P. G. Zheng, J. W. Bode,
Angew. Chem. Int. Ed. 2011, 50, 1673–1677; e) T. Jousseaume,
N. E. Wurz, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 1410–
1414; f) C. Fischer, S. W. Smith, D. A. Powell, G. C. Fu, J. Am.
Chem. Soc. 2006, 128, 1472–1473; g) D. Enders, T. Balensiefer,
Acc. Chem. Res. 2004, 37, 534–541; h) C. Burstein, F. Glorius,
Angew. Chem. 2004, 116, 6331; Angew. Chem. Int. Ed. 2004,
43, 6205–6208.
Acknowledgments
The authors would like to acknowledge financial support from the
Shanxi Province Science Foundation for Youths of China (No.
2009021041–1) and from the Main Cultivate Object of Progam for
the Top Science and Technology Innovation Teams of Higher
Learning Institutions of Shanxi.
[8]
For selected phase-transfer-catalyzed reactions, seea) O. Mahe,
I. Dez, V. Levacher, J. F. Briere, Angew. Chem. Int. Ed. 2010,
49, 7072–7075; b) D. Uraguchi, T. Ito, T. Ooi, J. Am. Chem.
Soc. 2009, 131, 3836–3837; c) R. J. He, C. H. Ding, K. Ma-
ruoka, Angew. Chem. 2009, 121, 4629; Angew. Chem. Int. Ed.
2009, 48, 4559–4561; d) D. Uraguchi, Y. Ueki, T. Ooi, J. Am.
Chem. Soc. 2008, 130, 14088–14089; e) R. J. He, X. S. Wang,
T. Hashimoto, K. Maruoka, Angew. Chem. 2008, 120, 9608;
Angew. Chem. Int. Ed. 2008, 47, 9466–9468; f) T. Furukawa,
N. Shibata, S. Mizuta, S. Nakamura, T. Toru, M. Shiro, Angew.
Chem. 2008, 120, 8171; Angew. Chem. Int. Ed. 2008, 47, 8051–
8054.
[1] For seminal reports, seea) U. Eder, G. Sauer, R. Wiechert, An-
gew. Chem. 1971, 83, 492; Angew. Chem. Int. Ed. Engl. 1971,
10, 496–497; b) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974,
39, 1615–1621; c) B. List, J. Am. Chem. Soc. 2000, 122, 9336–
9337; d) B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc.
2000, 122, 2395–2396; e) W. Notz, B. List, J. Am. Chem. Soc.
2000, 122, 7386–7387.
[2] For reviews on organocatalysis, seea) P. I. Dalko, L. Moisan,
Angew. Chem. 2001, 113, 3840; Angew. Chem. Int. Ed. 2001,
40, 3726–3748; b) Y. Hayashi, J. Synth. Org. Chem. Jpn. 2005,
63, 464–477; c) B. List, Chem. Commun. 2006, 819–824; d) A.
Dondoni, A. Massi, Angew. Chem. 2008, 120, 4716; Angew.
Chem. Int. Ed. 2008, 47, 4638–4660; e) N. Li, W. J. Liu, L. Z.
[9]
For selected proline-catalyzed Aldol reactions, seea) J. G. Her-
nandez, E. Juaristi, J. Org. Chem. 2011, 76, 1464–1467; b)
6416
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 6413–6417