10.1002/chem.201705183
Chemistry - A European Journal
COMMUNICATION
Figure 1. Solid-state structure of isolated cationic cobalt complex [Co-Int] (H
and SbF6 anion -omitted for clarity)
Acknowledgements
Financial support provided by SERB (EMR2016/000136) to
carry out this research work is gratefully acknowledged. BS
acknowledges IITK for (PK Kelkar) young faculty award. MS and
BE thanks to CSIR and IITK for their fellowship. NR thanks
SERB (PDF/2016/003710) for national post-doctoral fellowship.
J.R.P and B.S. acknowledge IIT Kanpur Computer Centre High
Performance Computing Facility.
Subsequently, 2 equiv. of NaOAc was added to the solution
and the resulting mixture was stirred at 60 °C for 12 h.
Evaporation of solvent followed by crystallization of crude
mixture gave the expected Cp*Co(III)-alkenyl intermediate,
which is confirmed by NMR, MS and X-ray (Figure 1).[13] Such
reactive intermediate was isolated under identical catalytic
reaction conditions. The isolated intermediate was used as
catalyst and hydroarylation product 3aa was obtained in 94%
yield after 24 h (Scheme 6c).
Keywords: Molecular Cp*Co catalyst • C-H bond alkenylation •
Hydroarylation • Reactive intermediate • Mechanism
Based on the control experiments, we propose the plausible
mechanism for C-H bond alkenylation as shown in Scheme 7.
[1]
[2]
P. H. Dixneuf, H. Doucet, C-H bond Activation and Catalytic
Functionalization II, Springer 2016, 1-207 and references therein.
For recent reviews on catalytic hydroarylation see: a) Y. Yamamoto,
Chem. Soc. Rev. 2014, 43, 1575-1600; b) T. Kitamura, Eur. J. Org.
Chem. 2009, 1111-1125; c) N. A. Foley, J. P. Lee, Z. Ke, T. B. Gunnoe,
T. R. Cundari, Acc. Chem. Res. 2009, 42, 585-597; d) F. Kakiuchi, T.
Kochi, Synthesis, 2008, 3013-3039; f) C. Nevado, A. M. Echavarren,
Synthesis, 2005, 167-182.
Electrophilic cationic Cp*Co(III)
A
undergoes reversible
cyclometallation with 1 (after initial displacement of ‘CO’) via
concerted metallation deprotonation.[14] Intermediate C will
undergo fast migratory insertion[9a] with alkyne lead to isolable
Co(III)-alkenyl intermediate E. This subsequently undergoes
protodemetallation to provide the hydroarylated product, along
with the regeneration of the active catalyst A.
[3]
For recent selected reviews see: a) G. E. M. Crisenza, J. F. Bower,
Chem. Lett. 2016, 45, 2-9; b) V. P. Boyarski, D. S. Ryabukhin, N. A.
Bokach, A. V. Vasilyev, Chem. Rev. 2016, 116, 5894-5986; c) L. Yang,
H. Huang, Chem. Rev. 2015, 115, 3468-3517; d) S. Pan, T. Shibata,
ACS Catal. 2013, 3, 704-712; e) D. A. Colby, R. G. Bergman, J. A.
Ellman, Chem. Rev. 2010, 110, 624-655; f) V. Ritleng, C. Sirlin, M.
Pfeffer, Chem. Rev. 2002, 102, 1731-1769; g) F. Kakiuchi, S. Murai,
Acc. Chem. Res. 2002, 35, 826-834.
1
3
[Cp*Co(CO)(k2-OPiv)]+ X-
CO
X = SbF6- & OPiv-
PivOH
Cp*
Reductive
elimination
Coordination
A
Cp*
[4]
For selected reviews on C-H bond functionalization using first row
transition metal catalysts see: a) G. Pototschnig, N. Maulide, M.
Schnürch, Chem. -Eur. J. 2017, 23, 9206-9232; b) Y. Liang, Y. –F.
Liang, N. Jiao, Org. Chem. Front. 2015, 2, 403-415; c) X. H. Cai, B. Xie,
ARKIVOC, 2015, 115, 184-211; d) N. Chatani, Top. Organomet. Chem.
2016, 56, 19-46; e) I. Bauer, H. J. Knölker, Chem. Rev. 2015, 115,
3170-3387; f) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature, 2014,
509, 299-309; g) K. Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208-
1219; h) L. Ackermann, J. Org. Chem. 2014, 79, 8948-8954; i) J.
Yamaguchi, K. Muto, K. Itami, Eur. J. Org. Chem. 2013, 19-30; j) R. T.
Gephart, T. H. Warren, Organometallics, 2012, 31, 7728-7752; k) Y.
Nakao, Chem. Rec. 2011, 11, 242-251; l) E. Nakamura, N. Yoshikai, J.
Org. Chem. 2010, 75, 6061-6067; m) A. A. Kulkarni, O. Daugulis,
Synthesis, 2009, 4087-4109. Also see: n) K. Gao, P. –S. Lee, T. Fujita,
N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249-12251; o) Z. Ding, N.
Yoshikai, Angew. Chem. Int. Ed. 2012, 51, 4698-4701; p) B. Zhou, H.
Chen, C. Wang, J. Am. Chem. Soc. 2013, 135, 1264-1267.
X
X
N
N
Co CO
Ph
o
C
N
O
N
H
O
CMe3
(X-ray)
B
Ph
Co
E
Cyclometallation
(CMD)
Alkyne
PivOH
Insertion
N
X
X
CO
N
Co Cp*
Cp*
N
N
Co
Ph
C
Alkyne
coordination
Ph
D
2
[5]
Reviews on Cp*Co(III)-catalyzed C-H bond functionalization see: a) P.
G. Chirila, C. J. Whiteoak, Dalton. Trans. 2017, 46, 9721-9739; b) T.
Yoshino, S. Matsunaga, Adv. Synth. Catal. 2017, 359, 1245-1262 and
references therein; c) S. Wang, S. –Y. Chen, X. –Q. Yu, Chem.
Commun. 2017, 53, 3165-3180; d) M. Usman, Z. –H. Ren, Y. –Y. Wang,
Z. H. Guan, Synthesis, 2017, 1419-1443; e) M. Moselage, J. Li, L.
Ackermann, ACS Catal. 2016, 6, 498-525; f) N. Yoshikai,
ChemCatChem. 2015, 7, 732-734; g) T. Hyster, Catal. Lett. 2015, 145,
458-467.
Scheme 7. Proposed mechanism
In conclusion, we have developed an efficient, cobalt-
catalyzed hydroarylation of arenes with alkyne under mild
conditions. The reaction can be performed even at room
temperature albeit in moderate yield. The reaction showed the
broad scope of arene with excellent functional group tolerance
and moderate-to-good regioselectivity. The switch in selectivity
between allenylation and alkenylation was observed, when
propargylic alcohols was used as coupling partner. We have
isolated Cp*Co(III)-alkenyl intermediate, which is active for
catalytic hydroarylation with excellent yield. We propose that the
electrophilic metal undergoes reversible C-H cobaltation first
followed by migratory insertion of alkyne led to Co(III)alkenyl
intermediate and subsequent protodemetallation provided the
hydroarylation product.
[6]
For selected examples see: a) T. Yoshino, H. Ikemoto, S. Matsunaga,
M. Kanai, Angew. Chem. Int. Ed. 2013, 52, 2207-2211; b) T. Yoshino,
H. Ikemoto, S. Matsunaga, M. Kanai, Chem. Eur. J. 2013, 19, 9142-
9146; c) B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, Adv. Synth. Catal.
2014, 356, 1491-1495; d) Y. Suzuki, B. Sun, K. Sakata, T. Yoshino, S.
Matsunaga, M. Kanai, Angew. Chem. Int. Ed. 2015, 54, 9944-9947; e)
D. Zhao, J. H. Kim, L. Stegemann, C. A. Strassert, F. Glorius, Angew.
Chem. Int. Ed. 2015, 54, 4508-4511; f) A. Lerchen, T. Knecht, C. G.
Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 15166-15170; g)
J. Park, S. Chang, Angew. Chem. Int. Ed. 2015, 54, 14103-14107; h) H.
Wang, M. M. Lorion, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55,
This article is protected by copyright. All rights reserved.