22
P. Manini et al. / Chemistry and Physics of Lipids 142 (2006) 14–22
incubated with 15(S)-HETE: a model for cellular cooperation sor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14,
between macrophages and airway epithelial cells. Eicosanoids 5,
203–211.
463–472.
Nagy, L., Tontonoz, P., Alvarez, J.G.A., Chen, H., Evans, R.M., 1998.
Oxidized LDL regulates macrophage gene expression through lig-
and activation of PPAR␥. Cell 93, 229–240.
Nair, J., Barbin, A., Yelic, I., Bartsch, H., 1999. Etheno DNA-base
adducts from endogenous reactive species. Mutat. Res. 424, 59–
69.
Chen, G.G., Xu, H., Lee, J.F., Subramaniam, M., Leung, K.L.,
Wang, S.H., Chan, U.P., Spelsberg, T.C., 2003. 15-hydroxy-
eicosatetraenoic acid arrests growth of colorectal cancer cells
via a peroxisome proliferator-activated receptor gamma-dependent
pathway. Int. J. Cancer 107, 837–843.
Cohn, J.A., Tsai, L., Friguet, B., Szweda, L.I., 1996. Chemical char-
acterization of a protein-4-hydroxy-2-nonenal crosslink: immuno-
logical detection in mitochondria exposed to oxidative stress. Arch.
Biochem. Biophys. 328, 158–164.
Comporti, M., 1998. Lipid peroxidation and biogenic aldehydes: from
the identification of 4-hydroxynonenal to further achievements in
biopathology. Free Radic. Res. 28, 623–635.
Dix, T.A., Marnett, L.J., 1985. Conversion of linoleic acid hydroper-
oxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids
by hematin. J. Biol. Chem. 260, 5351–5357.
Napolitano, A., Camera, E., Picardo, M., d’Ischia, M., 2002. Reactions
of hydro(pero)xy derivatives of polyunsaturated fatty acids/esters
with nitrite ions under acidic conditions. Unusual nitrosative
breakdown of methyl 13-hydro(pero)xyoctadeca-9,11-dienoate to
a novel 4-nitro-2-oximinoalk-3-enal product. J. Org. Chem. 67,
1125–1132.
Natarajan, R., Stern, N., Hsueh, W., Do, Y., Nadler, J., 1988. Role
of the lipoxygenase pathway in angiotensin II-mediated aldos-
terone biosynthesis in human adrenal glomerulosa cells. J. Clin.
Endocrinol. Metab. 67, 584–591.
Fischer, D.B., Christman, J.W., Badr, K.F., 1992. Fifteen-S-
hydroxyeicosatetraenoic acid (15-S-HETE) specifically antag-
onizes the chemotactic action and glomerular synthesis of
leukotriene B4 in the rat. Kidney Int. 41, 1155–1160.
Frigerio, M., Santagostino, M., Sputore, S., 1999. A user-friendly entry
to 2-iodoxybenzoic acid (IBX). J. Org. Chem. 64, 4537–4538.
Frimer, A.A., 1979. Reaction of singlet oxygen with olefins-question
of mechanism. Chem. Rev. 79, 359–387.
Gardner, H.W., Kleiman, R., 1981. Degradation of linoleic acid
hydroperoxides by a cysteine-FeCl3 catalyst as a model for simi-
lar biochemical reactions. II. Specificity in formation of fatty acid
epoxides. Biochim. Biophys. Acta 665, 113–125.
Gioacchini, A.M., Calonghi, N., Boga, C., Cappadone, C., Masotti, L.,
Roda, A., Traldi, P., 1999. Determination of 4-hydroxy-2-nonenal
at cellular levels by means of electrospray mass spectrometry.
Rapid Commun. Mass Spectrom. 13, 1573–1579.
Nemann, R., Khenkin, A.M., 1997. In: Patai, S., Rapport, Z. (Eds.),
The Chemistry of Dienes and Polyenes, vol. 1, pp. 1916–1918.
O’Flaherty, J.T., Cordes, J.F., Lee, S.L., Samuel, M., Thomas,
M.J., 1994. Chemical and biological characterization of oxo-
eicosatetraenoic acids. Biochim. Biophys. Acta 1201, 505–515.
Pfister, S.L., Spitzbarth, N., Nithipatikom, K., Edgemond, W.S., Falck,
J.R., Campbell, W.B., 1998. Identification of the 11,14,15- and
11,12,15-trihydroxyeicosatrienoic acids as endothelium-derived
relaxing factors of rabbit aorta. J. Biol. Chem. 273, 30879–30887.
Pfister, S.L., Spitzbarth, N., Zeldin, D.C., Lafite, P., Mansuy, D.,
Campbell, W.B., 2003. Rabbit aorta converts 15-HPETE to tri-
hydroxyeicosatrienoic acids: potential role of cytochrome P450.
Arch. Biochem. Biophys. 420, 142–152.
Pratt, D.A., Mills, J.H., Porter, N.A., 2003. Theoretical calculations
of carbon–oxygen bond dissociation enthalpies of peroxyl radi-
cals formed in the autoxidation of lipids. J. Am. Chem. Soc. 125,
5801–5810.
Schneider, C., Porter, N.A., Brash, A.R., 2004. Autoxidative transfor-
mation of chiral ω6 hydroxy linoleic and arachidonic acids to chiral
4-hydroxy-2E-nonenal. Chem. Res. Toxicol. 17, 937–941.
Schreiber, J., Mason, R.P., Eling, T.E., 1986. Carbon-centeredfreeradi-
calintermediatesinthehematin-andramseminalvesicle-catalyzed
decomposition of fatty acid hydroperoxides. Arch. Biochem. Bio-
phys. 251, 17–24.
Spiteller, G., 2002. Do changes in the cell membrane structure induce
the generation of lipid peroxidation products which serve as
first signalling molecules in cell to cell communication? Prostag.
Leukotr. Essent. Fatty Acids 67, 151–162.
Spiteller, P., Spiteller, G., 1997. 9-Hydroxy-10,12-octadecadienoic
acid (9-HODE) and 13-hydroxy-9,11-octadecadienoic acid (13-
HODE): excellent markers for lipid peroxidation. Chem. Phys.
Lipids 89, 131–139.
Stadelmann-Ingrand, S., Favreliere, S., Fauconneau, B., Mauco, G.,
Tallineau, C., 2001. Plasmalogen degradation by oxidative stress:
production and disappearance of specific fatty aldehydes and
fatty ␣-hydroxyaldehydes. Free Radic. Biol. Med. 31, 1263–
1271.
Sun, M., Salomon, R.G., 2004. Oxidative fragmentation of
hydroxy octadecadienoates generates biologically active ␥-
hydroxyalkenals. J. Am. Chem. Soc. 126, 5699–5708.
Hamberg, M., Herman, C.A., Herman, R.P., 1986. Novel biological
transformation of 15-Ls-hydroperoxy-5,8,11,13-eicosatetraenoic
acid. Biochim. Biophys. Acta 877, 447–457.
Ji, C., Amarnath, V., Pietenpol, J.A., Marnett, L.J., 2001. 4-
Hydroxynonenal induces apoptosis via caspase-3 activation and
cytochrome c release. Chem. Res. Toxicol. 14, 1090–1096.
Ku¨hn, H., 1996. Biosynthesis, metabolization and biological
importance of the primary 15-lipoxygenase metabolites
15-hydro(pero)xy-5Z,8Z,11Z,13E-eicosatetraenoic acid and
13-hydro(pero)xy-9Z,11E-octadecadienoic acid. Prog. Lipid Res.
35, 203–226.
Laychock, S.G., 1985. Effects of hydroxyeicosatetraenoic acids on
fatty acid esterification in phospholipids and insulin secretion in
pancreatic islets. Endocrinology 117, 1011–1019.
Manini, P., Camera, E., Picardo, M., Napolitano, A., d’Ischia, M., 2005.
Free radical oxidation of coriolic acid (13-(S)-hydroxy-9Z,11E-
octadecadienoic acid). Chem. Phys. Lipids 134, 161–171.
Marx, N., Bourcier, T., Sukhova, G.K., Libby, P., Plutzky, J., 1999.
PPAR␥ activation in human endothelial cells increases plasmino-
gen activator inhibitor type-1 expression-PPAR␥ as a potential
mediator in vascular disease. Arterioscler. Thromb. Vasc. Biol. 19,
546–551.
Murphy, R.C., 2001. Free-radical-induced oxidation of arachidonoyl
plasmalogen phospholipids: antioxidant mechanism and precur-