10.1002/ejoc.201701094
European Journal of Organic Chemistry
COMMUNICATION
Remarkably, however, this phenomenon was virtually absent
when identical experiments were performed with 1-Ph-DHIQ 2b
– the ee was more or less constant in the course of the reaction
(Figure S1). On the contrary, the absence of APA led to either
no (acetonitrile) or sluggish (i-PrOH) reactivity. These
experiments thus further confirmed the necessity of an acid
additive.
[1]
[2]
R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97–102.
N. Fleury-Brégeot, V. de la Fuente, S. Castillón, C. Claver,
ChemCatChem 2010, 2, 1346–1371.
[3]
[4]
J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713–1760.
J. Václavík, P. Kačer, M. Kuzma, L. Červený, Molecules 2011, 16,
5460–5495.
[5]
[6]
J. Václavík, P. Šot, B. Vilhanová, J. Pecháček, M. Kuzma, P. Kačer,
Molecules 2013, 18, 6804–6828.
MeO
MeO
MeO
MeO
1e' (1 mol%)
J. Václavík, P. Šot, J. Pecháček, B. Vilhanová, O. Matuška, M.
Kuzma, P. Kačer, Molecules 2014, 19, 6987–7007.
F. Foubelo, M. Yus, Chem. Rec. 2015, 15, 907–924.
D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–6686.
M. Wills, Top. Curr. Chem. (Z) 2016, 374, 14.
N
NH
∗
HCOOH/TEA, (APA),
solvent, 30 °C
4
5
[7]
i-PrOH
MeCN
[8]
100
80
60
40
20
0
100
80
60
40
20
0
[9]
[10]
H. G. Nedden, A. Zanotti-Gerosa, M. Wills, Chem. Rec. 2016, 16,
2619–2639.
[11]
[12]
M. Ružič, A. Pečavar, D. Prudič, D. Kralj, C. Scriban, A. Zanotti-
Gerosa, Org. Proc. Res. Dev. 2012, 16, 1293–1300.
V. Samano, J. A. Ray, J. B. Thompson, R. A. Mook, D. K. Jung, C.
S. Koble, M. T. Martin, E. C. Bigham, C. S. Regitz, P. L. Feldman, et
al., Org. Lett. 1999, 1, 1993–1996.
0
20 40 60 80 100 120
0
20 40 60 80 100 120
t [min]
t [min]
80
60
80
60
40
40
[13]
[14]
[15]
M. Chang, W. Li, X. Zhang, Angew. Chem. Int. Ed. 2011, 50,
10679–10681.
20
0
-20
-40
-60
-80
20
0
-20
-40
-60
-80
20 40 60 80 100 120
20 40 60 80 100 120
F. Berhal, Z. Wu, Z. Zhang, T. Ayad, V. Ratovelomanana-Vidal, Org.
Lett. 2012, 14, 3308–3311.
t [min]
t [min]
A. Iimuro, K. Yamaji, S. Kandula, T. Nagano, Y. Kita, K. Mashima,
Angew. Chem. Int. Ed. 2013, 52, 2046–2050.
with APA
without APA
with APA
without APA
[16]
[17]
R. Schwenk, A. Togni, Dalt. Trans. 2015, 44, 19566–19575.
N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1996, 118, 4916–4917.
Figure 3. Time-conversion and time-ee plots of ATH of imine 4 in acetonitrile
and i-PrOH catalysed by 1e
¢
.
[18]
[19]
[20]
[21]
E. Vedejs, P. Trapencieris, E. Suna, J. Org. Chem. 1999, 64, 6724–
6729.
To sum up, we have developed a simple protocol for the ATH of
1-aryl-substituted DHIQs using anhydrous phosphoric acid as
the key additive and a readily available iridium catalytic complex.
The method very well tolerates various functional groups,
following a relatively simple structure-activity pattern. Although
with a 1-alkyl-substituted substrate the enantioselectivity rapidly
changes and can even be reversed during the course of the
J. Wu, F. Wang, Y. Ma, X. Cui, L. Cun, J. Zhu, J. Deng, B. Yu,
Chem. Commun. 2006, 1766–1768.
L. Evanno, J. Ormala, P. M. Pihko, Chem. Eur. J. 2009, 15, 12963–
12967.
J. Přech, J. Václavík, P. Šot, J. Pecháček, B. Vilhanová, J.
Januščák, K. Syslová, R. Pažout, J. Maixner, J. Zápal, et al., Catal.
Commun. 2013, 36, 67–70.
reaction, 1-aryl-DHIQs are hydrogenated with
a practically
constant ee. The Ir-based anhydrous phosphoric acid promoted
system thus represents an attractive and practical alternative to
the few other existing methods for ATH of 1-aryl-DHIQs.
[22]
[23]
J. Mao, D. C. Baker, Org. Lett. 1999, 1, 841–843.
Z. Wu, M. Perez, M. Scalone, T. Ayad, V. Ratovelomanana-Vidal,
Angew. Chem. Int. Ed. 2013, 52, 4925–4928.
[24]
[25]
M. Perez, Z. Wu, M. Scalone, T. Ayad, V. Ratovelomanana-Vidal,
European J. Org. Chem. 2015, 2015, 6503–6514.
J. Pecháček, J. Václavík, J. Přech, P. Šot, J. Januščák, B.
Vilhanová, J. Vavřík, M. Kuzma, P. Kačer, Tetrahedron: Asymmetry
2013, 24, 233–239.
Acknowledgements
The work was financially supported by the Czech Science
Foundation (GA15-08992S), specific university research (MSMT
[26]
[27]
[28]
J. Přech, V. Matoušek, J. Václavík, J. Pecháček, K. Syslová, P. Šot,
J. Januščák, B. Vilhanová, M. Kuzma, P. Kačer, Am. J. Anal. Chem.
2013, 4, 125–133.
No 20-SVV/2017), the Operational Programme Prague
–
Competitiveness (CZ.2.16/3.1.00/24501), and National Program
of Sustainability (NPU I LO1613, MSMT-43760/2015). We thank
Prof. Dr. Antonio Togni (ETH Zürich) and Dr. Petr Beier (IOCB
CAS Prague) for providing their laboratories and Dr. Jiří
Rybáček (IOCB CAS Prague) for providing the HPLC instrument.
J. Václavík, J. Pecháček, B. Vilhanová, P. Šot, J. Januščák, V.
Matoušek, J. Přech, S. Bártová, M. Kuzma, P. Kačer, Catal. Lett.
2013, 143, 555–562.
M. J. Stirling, G. Sweeney, K. MacRory, A. J. Blacker, M. I. Page,
Org. Biomol. Chem. 2016, 14, 3614–3622.
Keywords: 1-aryl-3,4-dihydroisoquinolines • asymmetric
synthesis • hydrogenation • iridium • phosphoric acid
4
This article is protected by copyright. All rights reserved.