8672
O. Onomura et al. / Tetrahedron Letters 48 (2007) 8668–8672
10. Ladziata, U.; Carlson, J.; Zhdankin, V. V. Tetrahedron
Lett. 2006, 47, 6301–6304.
approaches the less crowded intermediate (S,S)-5a to
afford (S)-2a.
11. Some of asymmetric reactions catalyzed with Cu(II)–Ph-
BOX reported by us: Monobenzoylation of 1,2-diols: (a)
Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J.
Am. Chem. Soc. 2003, 125, 2052–2053; Monocarbamoy-
lation of 1,2-diols: (b) Matsumoto, K.; Mitsuda, M.;
Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y.
Tetrahedron Lett. 2006, 47, 8453–8456; Monosulfonyl-
ation of 1,2-diols: (c) Demizu, Y.; Matsumoto, K.;
Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2007,
48, 7605–7609; Benzoylation of 2-aminoalcohols: (d)
Mitsuda, M.; Tanaka, T.; Tanaka, T.; Demizu, Y.;
Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006,
47, 8073–8077; Alkylation into iminium ions: (e) Mat-
sumura, Y.; Minato, D.; Onomura, O. J. Organomet.
Chem. 2007, 692, 654–663.
The results presented in this Letter are novel for asym-
metric oxidation of 1,2-diols to afford enantiomerically
enriched a-ketoalcohols. Its synthetic application and
mechanistic study are underway.
Acknowledgement
This study was supported by a Grant-in-Aid for Scien-
tific Research (B) (No. 17350051) from Japan Society
for the Promotion of Science.
12. A recent review of chiral bis(oxazoline) ligands: Desimoni,
G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106,
3561–3651.
13. Recently, oxidation of 1,2-diols to 1,2-diketones using
NBS as an oxidant has been reported: Khurana, J. M.;
Kandpal, B. M. Tetrahedron Lett. 2003, 44, 4909–4912.
14. The activated intermediates 5 are transformed by K2CO3
to the copper(II) alkoxide,11a which might be more easily
oxidized than the corresponding diols.
References and notes
1. Recent reviews: (a) Noyori, R.; Aoki, M.; Sato, K. Chem.
Commun. 2003, 1977–1986; (b) Irie, R.; Katsuki, T. Chem.
Record 2004, 4, 96–109; (c) Mallat, T.; Baiker, A. Chem.
Rev. 2004, 104, 3037–3058; (d) Schultz, M. J.; Sigman, M.
S. Tetrahedron 2006, 62, 8227–8241.
2. (a) David, S. C.R. Acad. Sci. Paris, Ser. C 1974, 278,
1051–1053; (b) David, S.; Theffry, A. J. Chem. Soc.,
Perkin Trans. 1 1979, 1568–1573.
15. A typical procedure for asymmetric oxidation: Under an
aerobic atmosphere, a solution of Cu(OTf)2 (18.1 mg,
0.05 mmol) and (R,R)-Ph-BOX (16.7 mg, 0.05 mmol) in
CHCl3 (5 mL) was stirred for 10 min. Into the solution
were added 1a (0.5 mmol), potassium carbonate (138 mg,
1.0 mmol) and NBS (178 mg, 1.0 mmol). After stirring for
3 h at rt, the solution was poured in 10% aqueous Na2S2O3
and extracted with AcOEt (20 mL · 3). The combined
organic layer was dried over MgSO4 and the solvent was
removed under reduced pressure. The residue was purified
by silica gel column chromatography (n-hexane/
AcOEt = 15:1) to afford (R)-2a (83% yield, 72% ee) as a
3. Hanessian, S.; Roy, R. J. Am. Chem. Soc. 1979, 101, 5839–
5841.
4. (a) Tsuda, Y.; Hanajima, M.; Yoshimoto, K. Chem.
Pharm. Bull. 1983, 31, 3778–3788; (b) Tsuda, Y.; Hanaj-
ima, M.; Matsuhira, N.; Okuno, Y.; Kanemitsu, K. Chem.
Pharm. Bull. 1989, 37, 2344–2350; (c) Liu, H. M.; Sato, Y.;
Tsuda, Y. Chem. Pharm. Bull. 1993, 41, 491–501.
5. Fernandez-Mayoralas, A.; Bernabe, M.; Martin-Lomas,
M. Tetrahedron 1988, 44, 4877–4882.
6. Maki, T.; Fukae, K.; Harasawa, H.; Ohishi, T.; Matsu-
mura, Y.; Onomura, O. Tetrahedron Lett. 1998, 39, 651–
654.
26
white solid. Mp 135–137 ꢁC. ½aꢀD ꢁ77.7 (c 1.5, acetone)
22
[lit.16 (S)-2a (>98% ee); ½aꢀD +111.9 (c 1.5, acetone)]. The
7. Reaction conditions: in CHCl3, at rt, for 3 h; from meso-
hydrobenzoin (1a) to benzoin (2a) in 65% and benzil (3a)
in 18% yield.
optical purity of (R)-2a was determined by chiral HPLC:
Daicel Chiralcel OJ-H column (4.6 mm B, 250 mm),
n-hexane/isopropanol = 10:1, wavelength: 210 nm, flow
rate: 1.0 ml/min, retention time: 20.5 min ((R)-(+)-2a),
24.5 min ((S)-(ꢁ)-2a).
8. Representative literatures for catalytic asymmetric oxida-
tion of 1,3- and/or 1,4-diols: (a) Ferreira, E. M.; Stoltz, B.
M. J. Am. Chem. Soc. 2001, 123, 7725–7726; (b) Tanaka,
H.; Kawakami, Y.; Goto, K.; Kuroboshi, M. Tetrahedron
Lett. 2001, 42, 445–448; (c) Kashiwagi, Y.; Kurushima, F.;
Chiba, S.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem.
Commun. 2003, 114–115; (d) Mandal, S. K.; Sigman, M. S.
J. Org. Chem. 2003, 68, 7535–7537; (e) Suzuki, T.; Morita,
K.; Matsuo, Y.; Hiroi, K. Tetrahedron Lett. 2003, 44,
2003–2006; (f) Shimizu, H.; Onitsuka, S.; Egami, H.;
Katsuki, T. J. Am. Chem. Soc. 2005, 127, 5396–5413; (g)
Nakamura, Y.; Egami, H.; Matsumoto, K.; Uchida, T.;
Katsuki, T. Tetrahedron 2007, 63, 6383–6387.
16. The absolute configuration of (R)-2a was determined by
comparing with specific rotation of authentic sample:
¨
Demir, A. S.; Sßeßsenoglu, O. Org. Lett. 2003, 5, 2047–
2050.
17. The absolute stereoconfiguration of recovered (R,R)-4ap
was determined by comparing with specific rotation of
25
authentic sample. Compound (R,R)-4ap: ½aꢀD ꢁ3.5 (c 1.2,
25
EtOH). [lit.18 (R,R)-4ap (>99% ee); ½aꢀD ꢁ7.1 (c 1.2, 95%
EtOH)].
18. Huang, J.; Corey, E. J. Org. Lett. 2003, 5, 3455–3458.
19. Kagan, H. B.; Fiaud, J. C. In Topics in Stereochemistry;
Eliel, E. L., Ed.; Wiley & Sons: New York, 1988; Vol. 18,
pp 249–330.
20. Absolute stereoconfiguration of 6bp-at shown in Eq. 8 and
Table 3 was deduced on the basis of that of 6ap.
9. (a) Jakka, K.; Zhao, C.-G. Org. Lett. 2006, 8, 3013–3015;
Stoichiometric method: (b) D’Accolti, L.; Detomaso, A.;
Fusco, C.; Rosa, A.; Curci, R. J. Org. Chem. 1993, 58,
3600–3601; (c) Adam, W.; Saha-Mo¨ller, C. R.; Zhao,
C.-G. J. Org. Chem. 1999, 64, 7492–7497.