Inorganic Chemistry
Article
2015, 51, 10353−10356. (c) Huang, C.; Wang, H.; Wang, X.; Gao, K.;
Wu, J.; Hou, H.; Fan, Y. Surfactant-Assisted Nanocrystalline Zinc
Coordination Polymers: Controlled Particle Sizes and Synergistic
Effects in Catalysis. Chem. - Eur. J. 2016, 22, 6389−6396. (d) Ding, R.;
Huang, C.; Lu, J.; Wang, J.; Song, C.; Wu, J.; Hou, H.; Fan, Y. Solvent
Templates Induced Porous Metal-Organic Materials: Conformational
Isomerism and Catalytic Activity. Inorg. Chem. 2015, 54, 1405−1413.
(e) Huang, C.; Han, X.; Shao, Z. C.; Gao, K.; Liu, M. J.; Wang, Y. J.;
Wu, J.; Hou, H. H.; Mi, L. W. Solvent-Induced Assembly of Sliver
Coordination Polymers (CPs) as Cooperative Catalysts for Synthesiz-
ing of Cyclopentenone [b] pyrroles Frameworks. Inorg. Chem. 2017,
56, 4874−4884.
(7) (a) Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.;
Verpoort, F. Metal-organic frameworks: versatile heterogeneous
catalysts for efficient catalytic organic transformations. Chem. Soc.
Rev. 2015, 44, 6804−6849. (b) Zhang, T.; Lin, W. Metal-organic
frameworks for artificial photosynthesis and photocatalysis. Chem. Soc.
Rev. 2014, 43, 5982−5993. (c) Hu, F. L.; Wang, H. F.; Guo, D.;
Zhang, H.; Lang, J. P.; Beves, J. E. Controlled formation of chiral
networks and their reversible chiroptical switching behaviour by UV/
microwave irradiation. Chem. Commun. 2016, 52, 7990−7993.
(8) (a) Roberts, J. M.; Fini, B. M.; Sarjeant, A. A.; Farha, O. K.;
Hupp, J. T.; Scheidt, K. A. Urea metal-organic frameworks as effective
and size-selective hydrogen-bond catalysts. J. Am. Chem. Soc. 2012,
134, 3334−3337. (b) Yu, X.; Cohen, S. M. Photocatalytic Metal-
Organic Frameworks for Selective 2,2,2-Trifluoroethylation of
Styrenes. J. Am. Chem. Soc. 2016, 138, 12320−12323.
(9) (a) Sawano, T.; Thacker, N. C.; Lin, Z.; McIsaac, A. R.; Lin, W.
Robust, Chiral, and Porous BINAP-Based Metal-Organic Frameworks
for Highly Enantioselective Cyclization Reactions. J. Am. Chem. Soc.
2015, 137, 12241−12248. (b) Manna, K.; Ji, P.; Greene, F. X.; Lin, W.
Metal-Organic Framework Nodes Support Single-Site Magnesium-
Alkyl Catalysts for Hydroboration and Hydroamination Reactions. J.
Am. Chem. Soc. 2016, 138, 7488−7491. (c) Sawano, T.; Ji, P.; McIsaac,
A. R.; Lin, Z.; Abney, C. W.; Lin, W. The first chiral diene-based metal-
organic frameworks for highly enantioselective carbon-carbon bond
formation reactions. Chem. Sci. 2015, 6, 7163−7168. (d) Thompson,
A. B.; Pahls, D. R.; Bernales, V.; Gallington, L. C.; Malonzo, C. D.;
Webber, T.; Tereniak, S. J.; Wang, T. C.; Desai, S. P.; Li, Z.; Kim, I. S.;
Gagliardi, L.; Penn, R. L.; Chapman, K. W.; Stein, A.; Farha, O. K.;
Hupp, J. T.; Martinson, A. B. F.; Lu, C. C. Installing Heterobimetallic
Cobalt-Aluminum Single Sites on a Metal Organic Framework
Support. Chem. Mater. 2016, 28, 6753−6762. (e) Noh, H.; Cui, Y.;
Peters, A. W.; Pahls, D. R.; Ortuno, M. A.; Vermeulen, N. A.; Cramer,
C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. M. An Exceptionally Stable
Metal-Organic Framework Supported Molybdenum(VI) Oxide
Catalyst for Cyclohexene Epoxidation. J. Am. Chem. Soc. 2016, 138,
14720−14726. (f) Manna, K.; Ji, P.; Lin, Z.; Greene, F. X.; Urban, A.;
Thacker, N. C.; Lin, W. Chemoselective single-site Earth-abundant
metal catalysts at metal−organic framework nodes. Nat. Commun.
2016, 7, 12610. (g) Ji, P.; Manna, K.; Lin, Z.; Urban, A.; Greene, F. X.;
Lan, G.; Lin, W. Single-Site Cobalt Catalysts at New Zr8(μ2-O)8(μ2-
OH)4 Metal-Organic Framework Nodes for Highly Active Hydro-
genation of Alkenes, Imines, Carbonyls, and Heterocycles. J. Am.
Chem. Soc. 2016, 138, 12234−12242.
ACKNOWLEDGMENTS
■
This work was funded by the National Natural Science
Foundation of China (Nos. 21771163, 21371155, and
21671174), the National Natural Science Foundation of
Henan Provience (No. 162300410243), and Project for the
Leading Young Teachers in Henan Provincial Institutions of
Higher Education of China.
REFERENCES
■
(1) (a) He, C.; Liu, D.; Lin, W. Nanomedicine Applications of
Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds:
Nanoscale Metal-Organic Frameworks and Nanoscale Coordination
Polymers. Chem. Rev. 2015, 115, 11079−11108. (b) Gimen
́
ez-
Marques, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured
́
metal-organic frameworks and their bio-related applications. Coord.
Chem. Rev. 2016, 307, 342−360.
(2) (a) Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. MOFs for CO2
capture and separation from flue gas mixtures: the effect of
multifunctional sites on their adsorption capacity and selectivity.
Chem. Commun. 2013, 49, 653−661. (b) Mason, J. A.; Veenstra, M.;
Long, J. R. Evaluating metal-organic frameworks for natural gas
storage. Chem. Sci. 2014, 5, 32−51. (c) Cui, Y.; Li, B.; He, H.; Zhou,
W.; Chen, B.; Qian, G. Metal-Organic Frameworks as Platforms for
Functional Materials. Acc. Chem. Res. 2016, 49, 483−493. (d) Liu, D.;
Lang, J. P.; Abrahams, B. F. Highly efficient separation of a solid
mixture of naphthalene and anthracene by a reusable porous metal-
organic framework through a single-crystal-to-single-crystal trans-
formation. J. Am. Chem. Soc. 2011, 133, 11042−11045.
(3) (a) Kreno, L. K.; Leong, K.; Farha, O. K.; Allendorf, M.; Van
Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105−1125. (b) Hu,
Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for
chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43,
5815−5840. (c) Wang, F.; Wang, Y. T.; Yu, H.; Chen, J. X.; Gao, B. B.;
Lang, J. P. One Unique 1D Silver(I)-Bromide-Thiol Coordination
Polymer Used for Highly Efficient Chemiresistive Sensing of
Ammonia and Amines in Water. Inorg. Chem. 2016, 55, 9417−9423.
(d) Gu, T. Y.; Dai, M.; Young, D. J.; Ren, Z. G.; Lang, J. P.
Luminescent Zn(II) Coordination Polymers for Highly Selective
Sensing of Cr(III) and Cr(VI) in Water. Inorg. Chem. 2017, 56, 4668−
4678.
(4) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional
metal-organic frameworks. Chem. Rev. 2012, 112, 1126−1162.
(5) (a) Zhao, M.; Ou, S.; Wu, C. D. Porous Metal-Organic
Frameworks for Heterogeneous Biomimetic Catalysis. Acc. Chem. Res.
2014, 47, 1199−1207. (b) Fei, H.; Shin, J.; Meng, Y. S.; Adelhardt, M.;
Sutter, J.; Meyer, K.; Cohen, S. M. Reusable Oxidation Catalysis Using
Metal Monocatecholato Species in a Robust Metal-Organic Frame-
work. J. Am. Chem. Soc. 2014, 136, 4965−4973. (c) Chughtai, A. H.;
Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-organic
frameworks: versatile heterogeneous catalysts for efficient catalytic
organic transformations. Chem. Soc. Rev. 2015, 44, 6804−6849.
(d) Lin, W.; Long, J. R. Preface for the Forum on Metal-Organic
Frameworks for Energy Applications. Inorg. Chem. 2016, 55, 7189−
7191. (e) Wu, X. Y.; Qi, H. X.; Ning, J. J.; Wang, J. F.; Ren, Z. G.;
Lang, J. P. One silver(I)/tetraphosphine coordination polymer
showing good catalytic performance in the photodegradation of
nitroaromatics in aqueous solution. Appl. Catal., B 2015, 168, 98−104.
(f) Hu, F. L.; Wang, S. L.; Lang, J. P.; Abrahams, B. F. In-situ X-ray
diffraction snapshotting: Determination of the kinetics of a photo-
dimerization within a single crystal. Sci. Rep. 2015, 4, 6815.
(10) (a) Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming,
L. J.; Larsen, R. W.; Ma, S. How can proteins enter the interior of a
MOF? Investigation of cytochrome c translocation into a MOF
consisting of mesoporous cages with microporous windows. J. Am.
Chem. Soc. 2012, 134, 13188−13191. (b) Chen, Y.; Han, S.; Li, X.;
Zhang, Z.; Ma, S. Why Does Enzyme Not Leach from Metal-Organic
Frameworks (MOFs)? Unveiling the Interactions between an Enzyme
Molecule and a MOF. Inorg. Chem. 2014, 53, 10006−10008.
(6) (a) Huang, C.; Ding, R.; Song, C.; Lu, J.; Liu, L.; Han, X.; Wu, J.;
Hou, H. W.; Fan, Y. Template-Induced Diverse Metal-Organic
Materials as Catalysts for the Tandem Acylation-Nazarov Cyclization.
Chem. - Eur. J. 2014, 20, 16156−16163. (b) Huang, C.; Wu, J.; Song,
C.; Ding, R.; Qiao, Y.; Hou, H.; Chang, J.; Fan, Y. Reversible
conversion of valence-tautomeric copper metal-organic frameworks
dependent single-crystal-to-single crystal oxidation/reduction: aredox-
switchable catalyst for C-H bonds activation reaction. Chem. Commun.
(11) (a) Kortunov, P. V.; Heinke, L.; Arnold, M.; Nedellec, Y.; Jones,
D. J.; Caro, J.; Karger, J. Intracrystalline diffusivities and surface
̈
permeabilities deduced from transient concentration profiles: meth-
anol in MOF manganese formate. J. Am. Chem. Soc. 2007, 129, 8041−
8047. (b) Zhang, J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.;
Zaworotko, M. J. Temperature and concentration control over
G
Inorg. Chem. XXXX, XXX, XXX−XXX