10.1002/chem.201803161
Chemistry - A European Journal
FULL PAPER
remove residual AuIII complex on the surface. The
concentrations of AuIII complex in AuIII@MOF1 and AuIII@ZJU-
28 composites were confirmed by ICP spectroscopy and shown
in Table S1.
[2]
a) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem.Rev. 2012, 112, 1126; b) Q.
Yang, Q. Xu, H. L. Jiang, Chem. Soc. Rev. 2017, 46, 4774-4808; c) L.
Li, Q. Yang, S. Chen, X. Hou, B. Liu, J. Lu, H.-L. Jiang, Chem.
Commun. 2017, 53, 10026-10029; d) J. Zhao, Q. Wang, C. Sun, T.
Zheng, L. Yan, M. Li, K. Shao, X. Wang, Z. Su, J. Mater. Chem. A 2017,
5, 12498-12505.
Photocatalytic activity of AuIII@MOFs.
[3]
[4]
[5]
[6]
T. Sawano, Z. Lin, D. Boures, B. An, C. Wang, W. Lin, J. Am. Chem.
Soc. 2016, 138, 9783-9786.
Complex AuIII (2 × 10-7 mol), MOF1 (20 mg), AuIII@MOF1 (20
mg, 0.75 wt% AuIII), ZJU-28 (20 mg) or AuIII@ZJU-28 (20 mg,
0.42 wt% AuIII) was added into acetonitrile (1.6 mL) solution
containing dibenzylamine (0.107 mmol). The mixture was
bubbled with oxygen gas during the entire process of experiment
and irradiated by a 300 W Xe-lamp (λ > 300 nm) at room
temperature. After irradiated for 1 h, 0.4 μL of the solution was
taken out and injected into a gas chromatography (GC) with FID
and a HP-FFAP column. The yield of organic products was
calculated based on GC. The recycle of catalyst AuIII@MOF1 or
AuIII@ZJU-28 was carried out by washing the catalyst several
times with acetonitrile, and then fresh substrate (0.107 mmol)
and acetonitrile (1.6 mL) was added in the test tube. For
oxidative reaction of other substrates, the same experimental
condition was employed, except replacing dibenzylamine with
other amine. And for oxidative reaction using N,N-bis(4-
methoxybenzyl)amine as substrate, the product yield was
confirmed by 1H NMR spectroscopy using 4,4′-dimethyl-2,2′-
bipyridine as internal standard.
H. Liu, C. Xu, D. Li, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 5379-
5383.
C.-Y. Sun, W.-P. To, X.-L. Wang, K.-T. Chan, Z.-M. Su, C.-M. Che,
Chem. Sci. 2015, 6, 7105-7111.
a) O. K. Farha, A. Ö. Yazaydın, I. Eryazici, C. D. Malliakas, B. G.
Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, J. T. Hupp, Nat.
Chem. 2010, 2, 944-948; b) J. R. Li, H. C. Zhou, H. C. Zhou, Nat. Chem.
2010, 2, 893-898; c) X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D.
Bradshaw, M. J. Rosseinsky, Science 2004, 306, 1012-1015.
a) H. Wu, Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836-868;
b) Z. Jin, H. Y. Zhao, X. J. Zhao, Q. R. Fang, J. R. Long, G. S. Zhu,
Chem. Commun. 2010, 46, 8612-8614.
[7]
[8]
a) Y. Liu, K. Vch, R. Larsen, M. Eddaoudi, Chem. Commun. 2006, 14,
1488-1490; b) H. Deng, S. Grunder, K. E. Cordova, C. Valente, H.
Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina,
H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi,
Science 2012, 336, 1018-1023; c) G. Férey, C. Mellotdraznieks, C.
Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 2005,
309, 2040-2042; d) X. Zhao, X. Bu, T. Wu, S. T. Zheng, L. Wang, P.
Feng, Nat. Commun. 2013, 4, 2344.
[9]
a) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-
238; b) L. Murphy, J. A. G. Williams, Top. Organomet. Chem. 2010, 28,
75-111; c) J. Kalinowski, V. Fattori, M. Cocchi, J. A. G. Williams,
Coordin. Chem. Rev. 2011, 255, 2401-2425; d) J. M. R. Narayanam, C.
R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102-113; e) C. Y. Sun, W.
P. To, F. F. Hung, X. L. Wang, Z. M. Su, C. M. Che, Chem. Sci. 2018, 9,
2357-2364.
Size selective catalysis.
The selective oxidation reaction was carried out using AuIII (1 ×
10-6 mol), AuIII@ZJU-28 (10 mg, 0.42 wt% AuIII) or
AuIII@MOF1(10 mg, 0.75 wt% AuIII) as catalysts and adding two
kinds of substrates with equimolar quantity (0.053 mmol). The
mixture was bubbled with oxygen gas and irradiated under 300
W Xenon lamp (λ > 300 nm) at room temperature for 1 h. The
yield ratio was calculated based on GC and 1H NMR
spectroscopy.
[10] a) C. Y. Sun, X. L. Wang, X. Zhang, C. Qin, P. Li, Z. M. Su, D. X. Zhu,
G. G. Shan, K. Z. Shao, H. Wu, J. Li, Nat. Commun. 2013, 4, 2717-
2024; b) Y.-Q. Lan, H.-L. Jiang, S.-L. Li, Q. Xu, Adv. Mater. 2011, 23,
5015-5020; c) D. T. Genna, A. G. Wong-Foy, A. J. Matzger, M. S.
Sanford, J. Am. Chem. Soc. 2013, 135, 10586-10589.
[11] J. J. Yan, A. L. Chow, C. H. Leung, R. W. Sun, D. L. Ma, C. M. Che,
Chem. Commun. 2010, 46, 3893-3895.
[12] J. Muzart, Tetrahedron 2009, 65, 8313-8323.
[13] J. Yu, Y. Cui, C. Wu, Y. Yang, Z. Wang, M. O'Keeffe, B. Chen, G. Qian,
Angew. Chem., Int. Ed. 2012, 51, 10542-10545.
Acknowledgements
[14] V. K. Au, K. M. Wong, N. Zhu, V. W. Yam, J. Am. Chem. Soc. 2009,
131, 9076-9085.
This work was financially supported by the NSFC of China (No.
21601032, 21671034, and 21471027), Changbai Mountain
Scholars of Jilin Province, the China Postdoctoral Science
Foundation (No. 2017M611295, 2018M630312) and the
Fundamental Research Funds for the Central Universities (No.
2412018QD003).
[15] a) P. Duan, N. Yanai, N. Kimizuka, J. Am. Chem. Soc. 2013, 135,
19056-19059; b) J.-H. Kim, F. Deng, F. N. Castellano, J.-H. Kim, Chem.
Mater. 2012, 24, 2250-2252.
[16] a) W. P. To, G. S. Tong, W. Lu, C. Ma, J. Liu, A. L. Chow, C. M. Che,
Angew. Chem., Int. Ed. 2012, 51, 2654-2657; b) W. P. To, K. T. Chan,
G. S. Tong, C. Ma, W. M. Kwok, X. Guan, K. H. Low, C. M. Che, Angew.
Chem., Int. Ed. 2013, 52, 6648-6652; c) Q. Xue, J. Xie, H. Jin, Y.
Cheng, C. Zhu, Org. Biomol. Chem. 2013, 11, 1606-1609; d) T. N.
Zehnder, O. Blacque, K. Venkatesan, Dalton Trans. 2014, 43, 11959-
11972.
Keywords: Metal–organic frameworks • Microporous materials •
luminescence • photocatalysis • oxidation
[17] a) K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2003, 42, 1480-
1483; b) M. H. So, Y. Liu, C. M. Ho, C. M. Che, Chem. Asian. J. 2009, 4,
1551-1561; c) T. Naota, H. Takaya, S. I. Murahashi, Chem. Rev. 1998,
98, 2599-2660; d) A. G. Condie, J. C. González-Gómez, C. R. J.
Stephenson, J. Am. Chem. Soc. 2010, 132, 1464-1465; e) L. Z, C. J. Li,
J. Am. Chem. Soc. 2005, 127, 3672-3673; f) G. Jiang, J. Chen, J. S.
Huang, C. M. Che, Org. Lett. 2009, 11, 4568-4571.
[1]
a) J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213-1214; b) A.
Corma, H. Garcia, F. Xamena, Chem. Rev. 2010, 110, 4606-4655; c) H.
Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341,
1230444; d) J. P. Zhang, Y. B. Zhang, J. B. Lin, X. M. Chen, Chem.
Rev. 2012, 112, 1001; e) F. A. Paz, J. Klinowski, S. M. Vilela, J. P.
Tomé, J. A. Cavaleiro, J. Rocha, Chem. Soc. Rev. 2012, 41, 1088; f) H.
C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673; g) D.
Farrusseng, S. Aguado, C. Pinel, Angew. Chem., Int. Ed. 2009, 48,
7502-7513; h) M. C. Das, S. Xiang, Z. Zhang, B. Chen, Angew. Chem.,
Int. Ed. 2011, 50, 10510-10520; i) C. Xu, H. Liu, D. Li, J. H. Su, H. L.
Jiang, Chem. Sci. 2018, 9, 3152-3158.
This article is protected by copyright. All rights reserved.