1986
T. Takahashi, M. Miyazawa / Bioorg. Med. Chem. Lett. 21 (2011) 1983–1986
20. Takii, T.; Hayashi, M.; Hiroma, H.; Chiba, T.; Kawashima, S.; Zhang, H. L.;
Nagatsu, A.; Sakakibara, J.; Onozaki, K. J. Biochem. 1999, 125, 910.
21. Roh, J. S.; Han, Y. J.; Kim, J. H.; Hwong, J. K. Biol. Pharm. Bull. 2004, 27, 1976.
22. Yamazaki, Y.; Kawano, Y.; Yamanaka, A.; Maruyama, S. Bioorg. Med. Chem. Lett.
2009, 19, 4178.
tion between free radical scavenging activity and tyrosinase inhibi-
tion, however, suggest that serotonin derivatives may serve as the
designed development of novel tyrosinase inhibitors.
23. Method of tyrosinase assay: The tyrosinase assay was performed by using
tyrosine as the substrate. 140 L of 0.1 M phosphate buffer (pH 7.0), 36 L of
1.5 mM -tyrosine and 13 L of sample solution were added to each well of a
96-well plate and then incubated at 37 °C for 10 min. Then 16 L of mushroom
L-
Supplementary data
l
l
L
l
l
Supplementary data associated with this article can be found, in
tyrosinase (500 unit/ml, 0.1 M phosphate buffer at pH 7.0) was added, and the
assay mixture was incubated at 37 °C for 25 min. Before and after incubation,
the amount of dopachrome produced in the reaction mixture was measured at
492 nm in a microplate reader (Corona Electric Co. Ltd.). Arbutin and kojic acid
were used as a positive control. The extent of tyrosinase inhibition by the
addition of the different compounds was calculated and expressed as the
percentage necessary for 50% inhibition concentration (IC50). The percentage of
tyrosinase activity was calculated as follows: Tyrosinase activity (%) = [(CꢀD)/
(AꢀB)] ꢁ 100, where A is the absorbance at 492 nm without test sample, B is
References and notes
1. Perez-Gilabert, M.; Garcia-Carmona, F. Biochem. Biophys. Res. Commun. 2001,
285, 257.
2. Kubo, I.; Yokokawa, Y.; Kinst-Hori, I. J. Nat. Prod. 1995, 58, 739.
3. Lee, G. C.; Lee, C. Y. Food Chem. 1997, 60, 231.
the absorbance at 492 nm without test sample and substrate,
C is the
4. Bran-Williams, W.; Cuvelier, ME.; Berset, C. Lebensm-Wiss-Technol. 1995, 28, 25.
5. Gomez-Cordové, C.; Bartolomé, B.; Vieira, W.; Virador, V. M. J. Agric. Food. Chem.
2001, 49, 1620.
absorbance at 492 nm with test sample, D is the absorbance at 492 nm with
test sample, but without substrate.
24. The scavenging activity for the DPPH radical was performed according to the
6. Masamoto, Y.; Murata, Y.; Baba, K.; Shimoishi, Y.; Tada, M.; Takahata, K. Biol.
Pharm. Bull. 2004, 27, 422.
follow method. An amount of 500
was mixed in a cuvette with 500
l
L of a 0.5 mM methanoic DPPH solution
l
L of cinnamic acid derivatives at different
7. Khan, K. M.; Maharvi, G. M.; Abbaskhan, A.; Hayat, S.; Khan, M. T. H.;
Makhmoor, T.; Choudhary, M. I.; Shaheen, F.; Atta-ur-Rahman. Helv. Chim. Acta
2003, 86, 457.
concentration levels. These cuvettes were shaken vigorously. The cuvettes
were allowed to stand at 27 °C for 30 min, the absorbance was measured at
517 nm using
a U-1500 spectrophotometer. The percentage of radical
8. Okombi, S.; Kival, D.; Bonnet, S.; Moriotte, A. M.; Pervier, E.; Boumendzel, A.
Bioorg. Med. Chem. Lett. 2006, 16, 2252.
9. Mellay-Hamon, V. L.; Criton, M. Biol. Pharm. Bull. 2009, 32, 301.
10. Aruoma, O. I.; Halliwell, B. Free Radical Food Addit. 1991, 121.
11. Halliwell, B.; Murcia, M. A.; Chirico, S.; Aruoma, O. I. Crit. Rev. Food Sci. Nutr.
1995, 35, 7.
scavenging activity was calculated using the equation. Radical scavenging
activity (%) = (Control ODꢀSample OD/Control OD) ꢁ 100. All tests were
performed in triplicate. BHT was used as
investigation of radical scavenging activity.
a reference standard for the
25. Koyama, N.; Kuribayashi, K.; Seki, T.; Kobayashi, K.; Furuhata, Y.; Suzuki, K.;
Arisaka, H.; Nakano, T.; Amino, Y.; Ishii, K. J. Agric. Food. Chem. 2006, 54, 4970.
26. Somei, M.; Yamada, F.; Kurauchi, T.; Nagahama, Y.; Hasegawa, M.; Yamada, K.;
Teranishi, S.; Sato, H.; Kaneko, C. Chem. Pharm. Bull. 2001, 49, 87.
12. Winkler, C.; Frick, B.; Schroecksnadelm, K.; Schennach, H.; Fuchs, D. Food Chem.
Toxicol. 2006, 44, 2003.
13. Lupo, M. P. Clin. Dermatol. 2001, 19, 467.
14. Sakamura, S.; Terayama, Y.; Kawakatsu, S.; Ichihara, A.; Saito, H. Agric. Biol.
Chem. 1978, 42, 1805.
15. Sato, H.; Kawagishi, H.; Nishimura, T.; Yoneyama, S.; Yoshimoto, Y.; Sakamura,
S. Agric. Biol. Chem. 1985, 49, 2969.
16. Park, J. B. Phytomedicine 2008, 15, 1093.
17. Kang, K.; Park, S.; Kim, Y. S.; Lee, S.; Back, K. Appl. Microbiol. Biotechnol. 2009, 83,
27.
18. Zhang, H. L.; Nagatsu, A.; Watanabe, T.; Sakakibara, J.; Okuyama, H. Chem.
Pharm. Bull. 1997, 45, 1910.
19. Nagatsu, A.; Zhang, H. L.; Mizukami, H.; Okuyama, H.; Sakakibara, J.; Tokuda,
H.; Nishino, H. Nat. Prod. Lett. 2000, 14, 153.
27. N-Isoferuloyl serotonin (6): This compound was obtained with a yield of 77.0%;
mp: 99–103 °C; IR (KBr): 3390, 1652, 1584, 1509 cmꢀ1 1H NMR (400 MHz,
;
DMSO-d6) d 10.47 (1H, d, J = 2.0 Hz, H-1), 9.16 (1H, s, 30-OH) 8.59 (1H, s, 5-OH),
8.10 (1H, t, J = 6.0 Hz, –CONH), 7.27 (1H, d, J = 15.6 Hz, H-70), 7.10 (1H, d,
J = 8.0 Hz, H-7), 7.04 (1H, d, J = 2.0 Hz, H-2), 6.97 (1H, d, J = 1.2 Hz, H-20), 6.95
(1H, dd, J = 8.4 and 1.2 Hz, H-60), 6.92 (1H, d, J = 8.4 Hz, H-50), 6.86 (1H, d,
J = 1.6 Hz, H-4), 6.58 (1H, dd, J = 8.0 and 1.6 Hz, H-6), 6.39 (1H, d, J = 15.6 Hz, H-
80), 3.78 (3H, s, 40-OMe), 3.41 (2H, dt, J = 6.0 and 7.2 Hz, H-11), 2.77 (2H, t,
13
J = 7.2 Hz, H-10). C NMR (100 MHz, DMSO-d6) d 165.1 (C-90), 150.2 (C-5),
149.1 (C-40), 146.7 (C-30), 138.5 (C-70), 130.8 (C-8), 127.9 (C-9), 127.8 (C-10),
123.1 (C-2), 120.1 (C-60), 119.7 (C-80), 113.3 (C-50), 112.1 (C-7), 111.6 (C-6),
111.3 (C-3), 110.8 (C-20), 102.4 (C-4), 55.6 (40-OMe), 39.4 (C-11), 25.4 (C-10).