Fragmentation of the cyclopropylcarbinyl radical system is
of particular interest and has been thoroughly studied by many
groups. The prototype system holds a prominent place in radical
kinetic investigations and has been accurately characterized3
across a temperature range spanning more than 250 °C with a
fragmentation rate of 9.4 × 107 s-1 at 298 K. A wide breadth
of substituted derivatives has also been studied and has provided
much insight into the influence of substitution, resonance, and
stereoelectronic effects.4 Unsymmetrically substituted derivatives
have a bifurcated reaction pathway available and permit rate
comparisons between the two modes of fragmentation. Some
aryl-substituted analogues have been shown4d,5 to be exception-
ally fast with unimolecular fragmentation rates exceeding 1011
Kinetics and Regioselectivity of Ring Opening of
1-Bicyclo[3.1.0]hexanylmethyl Radical
Eric J. Kantorowski,* Daniel D. Le, Caleb J. Hunt,
Keegan Q. Barry-Holson, Jessica P. Lee, and
Lauren N. Ross
Department of Chemistry and Biochemistry, California
Polytechnic State UniVersity, San Luis Obispo, California 93407
ReceiVed September 12, 2007
s-1
.
An accurate study of fragmentation rates has necessitated the
use of a variety of techniques. These include, for example, the
use of spectroscopy (e.g., ESR), competition methods employing
a reducing agent (e.g., Bu3SnH, PhSH, PhSeH), and laser flash
photolysis. Of these, stannane and thiol reagents have been
useful as indirect methods for probing a wide range of radical
reactions. More recently, laser flash photolysis and the use of
PhSeH have proven useful for the upper end of the time scale
(>1011 s-1).6 Accurate rate expressions for the reaction of these
reducing agents with carbon-centered radicals have been
established and cross-calibrated with each other using several
radical reactions.3a,4g,7
In the present study, the effect of angularly fusing a
cyclopentyl ring onto the cyclopropylcarbinyl radical moiety
was investigated (Scheme 1). The unsymmetrically substituted
strained ring system gives rise to two fragmentation pathways.
Fission along the shared (endo) bond of the bicyclic structure
(2) realizes a ring-expansion event, providing methylenecyclo-
hexane (6) after reduction. Alternatively, fission of the bond
exo to the cyclopentyl group leads to 2-methyl-methylenecy-
clopentane (4).
Rate constants for the rearrangement of 1-bicyclo[3.1.0]-
hexanylmethyl radical (2) to 3-methylenecyclohexenyl radi-
cal (3) and 2-methylenecyclopentyl-1-methyl radical (1) were
measured using the PTOC-thiol competition method. The
ring-expansion pathway is described by the rate equation,
log(k/s-1) ) (12.5 ( 0.1) - (4.9 ( 0.1)/θ; the non-expansion
pathway is described by log(k/s-1) ) (11.9 ( 0.6) - (6.9 (
0.8)/θ. Employing the slower trapping agent, tri-n-butylstan-
nane, favors methylenecyclohexane over 2-methyl-methyl-
enecyclopentane by more than 120:1 at ambient or lower
temperatures.
Carbon-centered radicals have become valuable players in
synthetic strategy. This is due in no small part to the growing
catalogue of kinetic data available on a wide variety of radical
reactions. This information is especially critical in cases where
tandem events are planned.1 Additionally, radicals have proven
highly useful for annulations, intermolecular additions, realizing
quaternary centers, ring expansions, and combinations thereof.2
Their tolerance of a wide range of functional groups also permits
radicals to be utilized without the need to incorporate protecting
groups throughout other portions of a molecule.
The cyclopropylcarbinyl radical 2 framework played an early
role in demonstrating the importance that stereoelectronic factors
(3) (a) Newcomb, M.; Glenn, A. G. J. Am. Chem. Soc. 1989, 111, 275.
(b) Beckwith, A. L. J.; Bowry, V. W.; Moad, G. J. Org. Chem. 1988, 53,
1632. (c) Mathew, L.; Warkentin, J. J. Am. Chem. Soc. 1986, 108, 7981.
(d) Beckwith, A. L. J.; Moad, G. J. Chem. Soc., Perkin Trans. 2 1980,
1473. (e) Kinney, R. J.; Jones, W. D.; Bergman, R. G. J. Am. Chem. Soc.
1978, 100, 7902. (f) Maillard, B.; Forrest, D.; Ingold, K. U. J. Am. Chem.
Soc. 1976, 98, 7024.
(4) (a) Takekawa, Y.; Shishido, K. J. Org. Chem. 2001, 66, 8490. (b)
Lee, P. H.; Lee, B.; Lee, J.; Park, S. K. Tetrahedron Lett. 1999, 40, 3427.
(c) Kantorowski, E. J.; Eisenberg, S. W. E.; Fink, W. H.; Kurth, M. J. J.
Org. Chem. 1999, 64, 570. (d) Choi, S.-Y.; Newcomb, M. Tetrahedron
1995, 51, 657. (e) Batey, R. A.; Grice, P.; Harling, J. D.; Motherwell, W.
B.; Rzepa, H. S. J. Chem. Soc., Chem. Commun. 1992, 942. (f) Bowry, V.
W.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1991, 113, 5687. (g)
Newcomb, M.; Glenn, A. G.; Williams, W. G. J. Org. Chem. 1989, 54,
2675. (h) Beckwith, A. L. J.; Phillipou, G. Chem. Commun. 1971, 658. (i)
Cristol, S. J.; Barbour, R. V. J. Am. Chem. Soc. 1968, 90, 2832.
(5) (a) Choi, S.-Y.; Toy, P. H.; Newcomb, M. J. Org. Chem. 1998, 63,
8609. (b) Martin-Esker, A. A.; Johnson, C. C.; Horner, J. H.; Newcomb,
M. J. Am. Chem. Soc. 1994, 116, 9174. (c) Newcomb, M.; Johnson, C. C.;
Manek, M. B.; Varick, T. R. J. Am. Chem. Soc. 1992, 114, 10915.
(6) (a) Newcomb, M.; Choi, S.-Y.; Horner, J. H. J. Org. Chem. 1999,
64, 1225. (b) Horner, J. H.; Tanaka, N.; Newcomb, M. J. Am. Chem. Soc.
1998, 120, 10379.
(1) (a) Booker-Milburn, K. I.; Jenkins, H.; Charmant, J. P. H.; Mohr, P.
Org. Lett. 2003, 5, 3309. (b) Zhou, S.; Bommezizijn, S.; Murphy, J. A.
Org. Lett. 2002, 4, 443. (c) Njardarson, J. T.; McDonald, I. M.; Spiegel, D.
A.; Inoue, M.; Wood, J. L. Org. Lett. 2001, 3, 2435. (d) Lee, H.-Y.; Kim,
B. G. Org. Lett. 2000, 2, 1951. (e) Zoretic, P. A.; Fang, H. J. Org. Chem.
1998, 63, 7213. (f) Parker, K. A.; Fokas, D. J. Am. Chem. Soc. 1992, 114,
9688. (g) Curran, D. P.; Rakiewicz, D. M. J. Am. Chem. Soc. 1985, 107,
1448.
(2) (a) Banwell, M. G.; Kokas, O. J.; Willis, A. C. Org. Lett. 2007, 9,
3503. (b) Ru¨edi, G.; Hansen, H.-J. Tetrahedron Lett. 2004, 45, 5143. (c)
Ogawa, A.; Ogawa, I.; Sonoda, N. J. Org. Chem. 2000, 65, 7682. (d) Ziegler,
F. E.; Petersen, A. K. Tetrahedron Lett. 1996, 37, 809. (e) Boto, A.;
Betancor, C.; Sua´rez, E. Tetrahedron Lett. 1994, 35, 5509. (f) Clive, D. L.
J.; Daigneault, S. J. Org. Chem. 1991, 56, 3801. (g) Dowd, P.; Zhang, W.
J. Am. Chem. Soc. 1991, 113, 9875. (h) Boger, D. L.; Mathvink, R. J. J.
Org. Chem. 1990, 55, 5442. (i) Feldman, K. S.; Romanelli, A. L.; Ruckle,
R. E., Jr.; Miller, R. F. J. Am. Chem. Soc. 1988, 110, 3300. (j) Harling, J.
D.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. 1988, 1380.
(7) (a) Newcomb, M.; Varick, T. R.; Ha, C.; Manek, M. B.; Yue, X. J.
Am. Chem. Soc. 1992, 114, 8158. (b) Beckwith, A. L. J.; Bowry, V. W. J.
Org. Chem. 1989, 54, 2681.
10.1021/jo702010v CCC: $40.75 © 2008 American Chemical Society
Published on Web 01/16/2008
J. Org. Chem. 2008, 73, 1593-1596
1593