ACS Catalysis
Page 4 of 5
resulting in the formation of the undesired side product 13.4
Radical intermediate 12 is then predominantly oxidized by
another molecule of 1, as suggested by a reaction quantum
yield of 16.3, which indicates a radical chain mechanism. The
zwitterionic intermediate 14 cyclizes to give the desired
product 5.24
2014, 20, 3874-3886. (h) Meggers, E. Chem. Commun. 2015, 51,
3290-3301.
(4) Teders, M.; Gómez-Suárez, A.; Pitzer, L.; Hopkinson, M. N.;
Glorius, F. Angew. Chem. Int. Ed. 2017¸56, 902-906.
1
2
3
4
5
6
7
8
(5) Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334-5337.
(6) Selected examples for benzotriazole ring openings: (a) Su, Y.;
Petersen, J. L.; Gregg, T. L.; Shi, X. Org. Lett. 2015, 17, 1208-1211.
(b) Graebe, C.; Ullmann, F. Liebigs Ann. Chem. 1896, 291, 16-17.
(c) Katritzky, A. R.; Yang, B.; Abonia, R.; Insuasty, R. J. Chem. Res
(S) 1996, 12, 540-543. (d) For a review on N-substituted benzotri-
azoles, see: Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V.
Chem. Rev. 1998, 98, 409-548. (e) Wang, Y.; Wu, Y.; Li, Y.; Tang,
Y. Chem. Sci. 2017, doi: 10.1039/C7SC00367F.
(7) (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem.
Rev. 2010, 110, 4489-4497. (b) Kaushik, N. K.; Kaushik, N.; Attri,
P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Chio, E. H. Molecules
2013, 18, 6620-6662. (c) Somei, M.; Yamada, F. Nat. Prod. Rep.
2005, 22, 73-103. (d) Kawasaki, T.; Higuchi, K. Nat. Prod. Rep.
2005, 22, 761-793.
In conclusion, we have successfully developed a protocol for
the mild and regioselective construction of biologically im-
portant 2-substituted indoles using cheap and stable ben-
zotriazoles. This synthetic strategy displays broad substrate
scope, a high functional group tolerance and represents a
valuable complement to the synthesis of 2-substituted in-
doles. The reaction proceeds via a radical chain mechanism
as indicated by the determined reaction quantum yield and
Stern-Volmer analysis. We have successfully shown that
benzotriazoles as quenchers, discovered by our mechanism-
based screening technique, can be used as synthetic equiva-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
lents
of
otherwise
non-accessible
ortho-amino-
(8) (a) Lal, S.; Snape, T. J. Curr. Med. Chem. 2012, 19, 4828-4837.
(b) Abdel-Aty, A. M. Journal of Pesticide Science 2010, 35, 431-535.
(9) Shen, C.; Liu, R.-R.; Fan, R.-J.; Li, Y.-L.; Xu, T.-F.; Gao, J.-R.;
Jia Y.-X. J. Am. Chem. Soc. 2015, 137, 4936-4939.
arenediazonium salts in a variety of new photocatalytic reac-
tions.
ASSOCIATED CONTENT
(10) For reviews on indole syntheses, see: (a) Cacchi, S.; Fabrizi,
G. Chem. Rev. 2005, 105, 2873-2920. (b) Platon, M.; Amardeil, R.:
Djakovitch, L.; Hierso, J.-C. Chem. Soc. Rev. 2012, 41, 3929-3968.
For selected examples of transition-metal-catalyzed indole syn-
theses, see: (c) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am.
Chem. Soc. 2008, 130, 8172-8174. (d) Takeda, A.; Kamijo, S.;
Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 5662-5663. (e) Trost,
B. M.; McClory, A. Angew. Chem. Int. Ed. 2007, 46, 2074-2077. (f)
Stuart, D. R.; Bertrand-Laperle, M.; Burgress, K. M. N.; Fagnou,
K. J. Am. Chem. Soc. 2008, 130, 16474-16475. (g) Würtz, S.;
Rakshit, S.; Neumann, J. J.; Dröge, T.; Glorius, F. Angew. Chem.
Int. Ed. 2008, 47, 7230. (h) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding,
S.; Cui, Y., Jiao, N. Angew. Chem. Int. Ed. 2009, 48, 4572-4576. (i)
Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
121, 10251-10263. (j) Hovey, M. T.; Check, C. T.; Sipher, A. F.;
Scheidt, K. A. Angew. Chem. Int. Ed. 2014, 53, 9603-9607.
(11) (a) Bischler, A. Chem. Ber. 1892, 25, 2860-2879. (b) Bischler,
A.; Firemann, P. Chem. Ber. 1893, 26, 1336-1349.
(12) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689-
6690.
(13) Nakamura, I.; Nemoto, T.; Shiraiwa, N.; Terada, M. Org. Lett.
2009, 11, 1055-1058.
(14) The photocatalyst was selected aided by data obtained from
mechanism-based luminescence screening, see (4).
(15) Tetrabutylammonium salts have been used in our group
before as additives to increase the product yield: Honeker, R.;
Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem. Eur. J.
2016, 22, 4395-4399.
Supporting Information. Experimental details, characteri-
zation data, mechanistic experiments and copies of NMR
spectra of new compounds. This material is available free of
AUTHOR INFORMATION
Corresponding Author
*E-mail: glorius@uni-muenster.de
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Generous financial support by the DFG (Leibniz Award) is
gratefully acknowledged. M. T. thanks SusChemSys2.0 for
support. We thank Dr. A. Gómez-Suárez, F. Klauck and Dr.
L. Candish (all WWU Münster) for helpful discussions.
REFERENCES
(1) Review on screening approaches for reaction discovery: Col-
lins, K. D.; Gensch, T.; Glorius, F. Nat. Chem. 2014, 6, 859-871.
(2) (a) Hopkinson, M. N.; Gómez-Suárez, A.; Teders, M.; Sahoo,
B.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 4361-4366. For
selected examples of mechanism-based screening used for reac-
tion optimization or mechanistic elucidation, see: (b) Markert,
C.; Pfaltz, A. Angew. Chem. Int. Ed. 2004, 43, 2498-2500. (c)
Hinderling, C.; Chen, P. Angew. Chem. Int. Ed. 1999, 38, 2253-
2256. (d) Wassenaar, J.; Jansen, E.; van Zeist, W.-J.; Bickelhaupt,
F. M.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Nat. Chem. 2010,
2, 417-421.
(3) Reviews on visible-light photocatalysis: (a) Zeitler, K. Angew.
Chem., Int. Ed. 2009, 48, 9785-9789. (b) Yoon, T. P.; Ischay, M.
A.; Du, J. Nat. Chem. 2010, 2, 527-532. (c) Narayanam, J. M. R.;
Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102-113. (d) Shi, L.;
Xia, W. Chem. Soc. Rev. 2012, 41, 7687-7697. (e) Xi, Y.; Yi, H.; Lei,
A. Org. Biomol. Chem. 2013, 11, 2387-2403. (f) Prier, C. K.; Rankic,
D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322-5363. (g)
Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.–Eur. J.
(16) UV/vis absorption experiments indicate the formation of an
absorbing species, see supporting information.
(17) 18.5 equiv of phenylacetylene were recovered after the reac-
tion, resulting in the effective usage of 1.5 equiv phenylacetylene.
(18) Katritzky, A. R.; Ji, F. B.; Fan, W. Q.; Gallos, J. K.; Greenhill, J.
V.; King, R. W.; Steel, P. J. J. Org. Chem. 1992, 57, 190-195.
(19) (a) Collins, K. D., Glorius, F. Nat. Chem. 2013, 5, 597-601. (b)
Collins, K. D.; Rühling, A.; Glorius, F. Nat. Protoc. 2014, 9, 1348-
1353. For results of the additive-based robustness screen, see SI.
(20) Taylor, E. C.; Katz, A. H.; Salgado-Zamora, H.; McKillop, A.
Tetrahedron Lett. 1985, 26, 5963-5966.
(21) Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F. D. J.
Am. Chem. Soc. 2012, 134, 12928-12931.
4
ACS Paragon Plus Environment