10.1002/adsc.201800131
Advanced Synthesis & Catalysis
References
A plausible mechanism based on the above
experimental observations and published literature is
illustrated in Scheme 4.[18,19] Initially, propargylic
[1] a) M. C. Ortiz Villamizar, F. I. Zubkov, C. E. Puerto
Galvis, L. Y. Vargas Mendez, V. V. Kouznetsov, Org.
Chem. Front. 2017, 4, 1736; b) E. J. Jung, B. H. Park,
Y. R. Lee, Green Chem. 2010, 12, 2003; c) C.-C. Lin,
C.-C. Hsieh, Y.-C. Yu, C.-H. Lai, C.-N. Huang, P.-Y.
Kuo, C.-H. Lin, D.-Y. Yang, P.-T. Chou, J. Phys.
Chem. A. 2009, 113, 9321; d) R.-Y. Yang, D. Kizer, H.
Wu, E. Volckova, X.-S. Miao, S. M. Ali, M. Tandon, R.
E. Savage, T. C. K. Chan, M. A. Ashwell, Bioorg. Med.
Chem. 2008, 16, 5635; e) C. Hubert, J. Moreau, J.
Batany, A. Duboc, J.-P. Hurvois, J.-L. Renaud, Adv.
Synth. Catal. 2008, 350, 40; f) G. Appendino, G.
Cravotto, G. B. Giovenzana, G. Palmisano, J. Nat.
Prod. 1999, 62, 1627; g) R. J. Kumar, G. L. D.
Krupadanam, G. Srimannarayana, Synthesis 1990, 535.
alcohol
1
is converted to active propargyl
intermediate A, which could afford resonance-
stabilized intermediate B by the presence of a Lewis
acid catalyst (Zn(OTf)2). Next, intermolecular
nucleophilic attack of intermediate B by the double
bond of 4-hydroxy-2H-chromen-2-one (2a) generates
intermediate C, which could furnish intermediate D
by the release of a proton. The protonation of
intermediate D produces intermediate E, which could
undergo intramolecular nucleophilic attack to afford
desired product 3 and concomitant regeneration of
the catalyst.
Scheme 4. Proposed mechanism for the formation of
pyrano[3,2-c]chromen-5(2H)-one derivatives
[2] a) Q. Yang, L.-H. Zhou, W.-X. Wu, W. Zhang, N.
Wang, X.-Q. Yu, RSC Adv. 2015, 5, 78927; b) G.
Appendino, S. Tagliapietra, G. M. Nano, V. Picci,
Phytochemistry 1988, 27, 944.
[3] a) J. Moreau, C. Hubert, J. Batany, L. Toupet, T.
Roisnel, J.-P. Hurvois, J.-L. Renaud, J. Org. Chem.
2009, 74, 8963; b) F. Kuno, K. Otoguro, K. Shiomi, Y.
Iwai, S. Omura. J. Antibiot. 1996, 49, 742; c) F. Kuno,
K. Shiomi, K. Otoguro, T. Sunazuka, S. Omura. J.
Antibiot. 1996, 49, 748.
In summary, we have developed a Lewis acid-
catalyzed formal [3+3] cascade annulation of
propargylic alcohols with 4-hydroxy-2H-chromen-2-
ones that provides a practical, and environmentally
benign method of assembling this tricyclic structural
motif in excellent yields under mild conditions. Our
developed reaction conditions tolerate a wide scope
of typical organic functional groups. The highly
efficient catalytic system, ambient reaction
conditions, tricyclic structural products, operational
simplicity, and good functional group compatibility
of this strategy can be ranked among the most
sustainable and convenient alternatives for the
[4] a) A. B. Smith, T. Kinsho, T. Sunazuka, S. Ōmura,
Tetrahedron Lett. 1996, 37, 6461; b) T. Nagamitsu, T.
Sunazuka, R. Obata, H. Tomoda, H. Tanaka, Y.
Harigaya, S. Omura, A. B. Smith, J. Org. Chem. 1995,
60, 8126.
[5] a) T. C. McKee, C. D. Covington, R. W. Fuller, H. R.
Bokesch, S. Young, J. H. Cardellina, M. R. Kadushin,
D. D. Soejarto, P. F. Stevens, G. M. Cragg, M. R.
Boyd, J. Nat. Prod. 1998, 61, 1252; b) D. L. Galinis, R.
W. Fuller, T. C. McKee, J. H. Cardellina, R. J.
Gulakowski, J. B. McMahon, M. R. Boyd, J. Med.
Chem.1996, 39, 4507.
synthesis
of
pyrano[3,2-c]chromen-5(2H)-one
[6] L. Wang, S. Peng, J. Wang, Chem. Commun. 2011, 47,
derivatives.
5422.
[7] J. Zhang, G. Yin, Y. Du, Z. Yang, Y. Li, L. Chen, J.
Org. Chem. 2017, 82, 13594.
Experimental Section
[8] Y. Liu, J. Zhu, J. Qian, B. Jiang, Z. Xu, J. Org.
Chem.2011, 76, 9096.
General procedure for the synthesis of compounds 3
The reactions of propargylic alcohols 1 (0.1 mmol), and
substituted 4-hydroxy-2H-chromen-2-ones 2 (2.0 equiv),
Zn(OTf)2 (10 mol %) in DCE (2.0 mL) were conducted at
100 °C under an air atmosphere for 8.0 h. The reactions
were completed by TLC monitoring. The resulting
mixtures were cooled down to room temperature. The
mixtures were evaporated under reduced pressure. The
residues were further purified by chromatography on silica
gel to afford the corresponding products 3.
[9] a) Z. Zhou, H. Liu, Y. Li, J. Liu, Y. Li, J. Liu, J. Yao,
C. Wang, ACS Comb. Sci. 2013, 15, 363; b) M. R.
Zanwar, M. J. Raihan, S. D. Gawande, V. Kavala, D.
Janreddy, C.-W. Kuo, R. Ambre, C.-F. Yao, J. Org.
Chem. 2012, 77, 6495.
[10] G. C. Nandi, S. K, J. Org. Chem. 2016, 81, 11909.
[11] a) X. Cheng, Y. Yu, Z. Mao, J. Chen, X. Huang, Org.
Biomol. Chem. 2016, 14, 3878; b) C. Qi, H. Jiang, L.
Huang, G. Yuan, Y. Ren, Org. Lett. 2011, 13, 5520.
Acknowledgements
We thank the National Science Foundation (NSF 21472073 and
21532001).
[12] a) C. Raji Reddy, R. Rani Valleti, P. Sathish, J. Org.
Chem. 2017, 82, 2345; b) S. Muthusamy, A.
Balasubramani, E. Suresh, Adv. Synth. Catal. 2017,
4
This article is protected by copyright. All rights reserved.