Polymers 7b and 7c (see ESIz) exhibit similar EC properties.
Decreases in absorbance occur at 473 nm and 390 nm and an
increased broad absorbance starts at 800 nm. Unlike polymers
Laboratory (grant W911NF-09-D-0001) and the University
of California Discovery Program (IUCRP, grant gcp07-10260).
2
and 4, polymers 7a–c show significant absorption changes
Notes and references
in the IR at low voltage related to their donor–acceptor
properties (Fig. 8).
1
(a) S. K. Deb, Appl. Opt., Suppl., 1969, 3, 192; (b) S. K. Deb,
Philos. Mag., 1973, 27, 801.
The switching times of polymers 7a and 7b were determined
by monitoring the absorption intensity changes at 1100 nm
with the applied voltage switching between ꢁ2.5 V and
2
(a) R. J. Mortimer, A. L. Dyer and J. R. Reynolds, Displays, 2006,
27, 2; (b) R. J. Mortimer, Chem. Soc. Rev., 1997, 26, 147;
(c) N. M. Rowley and R. J. Mortimer, Sci. Prog., 2002, 85, 243;
(d) E. Unur, P. M. Beaujuge, S. Ellinger and J. R Reynolds, Chem.
Mater., 2009, 21, 5145.
2
2
.5 V. The response time of devices based on polymer 7a is
s for turning on and 0.7 s for turning off. The color change
3
(a) G. Sonmez, Chem. Commun., 2005, 5251; (b) G. Sonmez,
H. B. Sonmez, C. K. F. Shen and F. Wudl, Adv. Mater., 2004,
time of polymer 7b is much longer, requiring tens of seconds
to turn on and several seconds to turn off. This marked
difference in behavior probably stems from the introduction
of the long side chains in 7b. Polymer 7a has similar charge
transfer mobility to that of 4, and also contains the carbazole
unit to accelerate ion injection, leading (as described above)
to high switching speeds. But while the substitutions on
BT in polymers 7b and 7c improved the polymers’ solubility
1
6, 1905; (c) I. Schwendeman, J. Hewang, D. M. Welsh,
D. B. Tanner and J. R. Reynolds, Adv. Mater., 2001, 13, 634;
d) Y. Xia, J. Luo, X. Deng, X. Li, D. Li, X. Zhu, W. Yang and
(
Y. Cao, Macromol. Chem. Phys., 2006, 207, 511; (e) J. Tarver,
J. E. Yoo and Y. L. Loo, Chem. Mater., 2010, 22, 2333;
(
f) P. M. Beaujuge and J. R. Reynolds, Chem. Rev., 2010, 110, 268.
(a) R. D. Rauh, Electrochim. Acta., 1999, 44, 3165;
b) A. A. Argun, A. Cirpan and J. R. Reynolds, Adv. Mater.,
2003, 15.
(a) G. Sonmez, Chem. Commun., 2005, 5251; (b) E. Unur,
J.-H. Jung, R. J. Mortimer and J. R. Reynolds, Chem. Mater.,
4
5
6
7
(
(
making them readily soluble in common solvents at
room temperature), the flexible bulky side-chains evidently
disrupt molecular planarity and block the access of anions
to the polymer backbone. The low charge transfer mobility
of the 7b and 7c also will have a negative effect on
switching speed.
2
008, 20, 2328.
A. M. McDonagh, S. R. Bayly, D. J. Riley, M. D. Ward,
J. A. McCleverty, M. A. Cowin, C. N. Morgan, R. Varrazza,
R. V. Penty and I. H. White, Chem. Mater., 2000, 12, 2523.
(a) P. Chandrasekhar, G. C. Birur, P. Stevens, S. Rawel,
E. A. Pierson and K. L. Miller, Synth. Met., 2001, 119, 293;
(
b) P. Chandrasekhar, US Pat., 5 995 273, 1999.
8
9
A. L. Holt, J. G. A. Wehner, A. Hammp and D. E. Morse,
Macromol. Chem. Phys., 2010, 211, 1701.
(a) L. B. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright
and J. R. Reynolds, Adv. Mater., 2003, 15, 855; (b) J. Roncali,
P. Blanchard and P. Frere, J. Mater. Chem., 2005, 15, 1589.
`
Conclusion
We have synthesized and investigated the optical properties of
a new series of electrochromic polymers. These polymers
contain EDOT units and fluorene (2), carbazole (4), carbazole–
benzothiadiazole (7a), carbazole–benzothiadiazoles (7b and 7c)
formed by cross-linking though the Suzuki reaction. The
experimental data reveal that the materials’ optical and
electrical properties can be tuned by copolymerization with
different subunits. The donor–acceptor polymer 7a has the
longest maximum absorbance and narrowest band gap.
Polymers 4 and 7a exhibit the highest hole mobility at around
10 B. Sankaran and J. R. Reynolds, Macromolecules, 1997, 30, 2582.
1
1
1 M. Helgesen, S. A. Gevorgyan, F. C. Krebs and R. A. Janssen,
J. Chem. Mater., 2009, 21, 4669.
2 W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory
Chemicals, Elsevier, 5th edn, 2003.
13 C. Zhang, US Pat., 2004 0229 925, 2004.
1
1
4 P. H. Kwan and T. M. Swager, J. Am. Chem. Soc., 2005, 127, 5902.
5 V. F. Tran, S. Garreau, G. Louarn, G. Froyer and C. Chevrot,
J. Mater. Chem., 2001, 11, 1378.
16 H. Usta, A. Facchetti and T. J. Marks, Org. Lett., 2008, 10, 1385.
ꢁ5
2
ꢁ1 ꢁ1
1
7 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair,
P. R. Neagu, M. Belletete, G. Durocher, Y. Tao and M. Leclerc,
J. Am. Chem. Soc., 2008, 130, 732.
1
0
cm
V s , mainly attributable to the enhanced
intermolecular packing in the solid state. The much lower
hole mobilities of polymers 2, 7b and 7c apparently are due to
the bulk steric substitution twisting the polymer backbone,
leading to poorer interchain interaction. Polymers 7a–c show
significant absorption changes in the IR at lower voltages,
reflecting their donor–acceptor structures. Devices based on
polymers 4 and 7a can be operated in seconds due to their
high charge transfer mobility and ion injection efficiency.
Solid-state devices based on polymer 7a offer promise for
electrochromic applications in the IR, since its high charge
transfer mobility and ion injection efficiency permits relatively
rapid switching and good switchable contrast, while their
robustness exceeds that of some aqueous devices.
1
8 (a) W. Y. Lee, K. F. Cheng, T. F. Wang, C. C. Chueh, W. C. Chen,
C. S. Tuan and J. L. Lin, Macromol. Chem. Phys., 2007, 208, 1919;
(b) C. L. Liu, J. H. Tsai, W. Y. Lee, W. C. Chen and S. A. Jenekhe,
Macromolecules, 2008, 41, 6952.
1
9 Y. Zhu, R. D. Champion and S. A. Jenekhe, Macromolecules,
2006, 39, 8712.
20 M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf and
M. Scharber, Adv. Funct. Mater., 2007, 17, 2111.
2
1 (a) N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair,
R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao and
M. Leclerc, J. Am. Chem. Soc., 2008, 130, 732; (b) M. Morana,
M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen,
M. Scharber, Z. Zhu, D. Waller, R. Gaudiana and C. Brabec,
Adv. Funct. Mater., 2008, 18, 1757.
2
2 G. Zotti, G. Schiavon, S. Zecchin and L. Groenendaal, Chem.
Mater., 1999, 11, 3624.
2
3 (a) A. A. Argun, A. Cirpan and J. R. Reynold, Adv. Mater., 2003,
1
1
Acknowledgements
8, 1338; (b) B. Sankaran and J. R. Reynolds, Macromolecules,
997, 30, 2582.
We gratefully acknowledge support from DARPA through
ARO (grant W911NF-08-1-0494), the Army Research
2
4 G. Zotti, G. Schiavon, S. Zecchin and L. Groenendaal, Chem.
Mater., 1999, 11, 3624.
1
334 New J. Chem., 2011, 35, 1327–1334
This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011