2826
P. Suresh et al. / Tetrahedron: Asymmetry 18 (2007) 2820–2827
thin layer chromatography (TLC). TLC was performed on
F254, 0.25 mm silica gel plates (Merck). Plates were eluted
with appropriate solvent systems, and then stained with
either alkali KMnO4 or Ceric ammonium molybdate solu-
tions prepared in the laboratory. The developed plates were
first analyzed under UV 254 nm then stained with the
appropriate reagent. Column chromatography was per-
formed using silica gel with particle size 100–200 mesh.
High-performance liquid chromatograph with Daicel
Chiracel OD-H (25 cm · 0.46 cm i.d.) and Daicel Chiracel
OB-H (25 cm · 0.46 cm i.d.) chiral columns were used for
the measurements.
4.2.4. Spectral data for L4. Orange solid; yield 94%;
25
½aꢁD ¼ þ181:2 (c 0.5, CHCl3); IR (KBr): 3304, 2923,
2862, 1605, 1546, 1452, 1376, 1313, 1230, 1071, 832,
1
758 cmꢂ1; H NMR (CDCl3): d 3.81–3.87 (t, J = 9.6 Hz,
1H), 4.13–4.15 (d, J = 9.6 Hz, 1H), 4.63 (m, 1H), 6.77 (br
s, 1H) 7.33–7.43 (m 5H), 8.22–8.25 (d, J = 12 Hz, 1H),
12.18–12.24 (dd, J = 12 Hz and 12 Hz, 1H); 13C NMR
(CDCl3): d 67.6, 68.3, 104.6, 126.0, 128.3, 129.2, 136.5,
157.8, 184.7; mp slow decomposition >65 ꢁC; HRMS
(ESI) calcd for C27H46N3O6 [M+H]+: Calcd: 568.2448;
Obsd: 568.2464.
4.2.5. Spectral data for L5. Yellow solid; yield 95%;
25
½aꢁD ¼ ꢂ329:9 (c 0.48, CH2Cl2); IR (KBr): 3342, 3054,
4.2. General procedure for the synthesis of chiral
C3-symmetric aminoalcohol based Schiff’s base ligands
2930, 1609, 1546, 1456, 1381, 1266, 1053, 835, 735,
1
701 cmꢂ1; H NMR (CDCl3): d 2.78–2.82 (m 2H), 2.84–
2.92 (dd, J = 8 Hz and 1H), 3.55–3.6 (m, 1H), 3.69–3.72
(d, J = 12 Hz, 1H), 6.26 (br s, 1H), 7.11–7.37 (m 5H),
7.76–7.79 (d, J = 12 Hz 1H), 11.18–11.23, (dd, J = 12 Hz
and 12 Hz, 1H); 13C NMR (CDCl3): d 59.4, 68.9, 69.6,
105.7, 127.8, 129.6, 130.4, 137.6, 157.8, 184.7; mp 149–
150 ꢁC; HRMS (ESI) calcd for C36H40N3O6 [M+H]+:
Calcd: 610.2917; Obsd: 610.2907.
To a solution of trialdehyde (1 mmol) in ethanol (1 mL)
was added a solution of corresponding equivalent of chiral
aminoalcohol in ethanol (1 mL). The homogeneous mix-
ture was irradiated in an unmodified domestic microwave
oven at a low power setting for 5 min. The reaction mixture
was then cooled to room temperature and ethanol was re-
moved under reduced pressure to afford the crude product
which was purified by column chromatography over silica
gel using EtOAc–hexane to give pure C3-symmetric amino-
alcohol based Schiff’s base ligands as yellow solids (86–98%
yield).
4.2.6. Spectral data for L6. Orange syrup; yield 89%;
25
½aꢁD ¼ ꢂ154:2 (c 0.62, CHCl3); IR (KBr): 3338, 3021,
2932, 1612, 1552, 1454, 1391, 1256, 1049, 837, 729 cmꢂ1
;
1H NMR (CDCl3): d 1.15–1.16 (d, J = 6.5 Hz, 3H), 3.32–
3.57 (m, 2H), 3.71–3.73 (d, J = 10 Hz, 1H), 5.24 (br s,
1H), 7.81–7.84 (d, J = 12 Hz, 1H), 11.04–11.09 (dd,
J = 12 Hz and 12 Hz, 1H); 13C NMR (CDCl3): d 17.3,
60.1, 67.8, 104.6, 158.2, 185.1; HRMS (ESI) calcd for
C18H28N3O6 [M+H]+: Calcd: 382.1916; Obsd: 382.1931.
4.2.1. Spectral data for L1. Yellow solid; yield 96%;
25
½aꢁD ¼ þ28:5 (c 0.6, CHCl3); IR (KBr): 3338, 3050, 2975,
1
1619, 1547, 1448, 858, 841, 738 cmꢂ1; H NMR (CDCl3):
d 1.82 (br s, 1H), 2.87–3.04 (m, 2H), 4.42–4.56 (m, 2H),
7.21–7.43 (m, 5H), 7.91 (s, 1H), 11.25 (s, 1H); 13C NMR
(CDCl3): d 39.9, 67.6, 73.6, 105.2, 125.2, 127.2, 128.8,
139.4, 141.0, 157.1, 184.5; mp slow decomposition
>156 ꢁC; HRMS (ESI) calcd for C36H33N3O6 [M+H]+:
Calcd: 604.7317; Obsd: 604.7320.
4.2.7. Spectral data for L7. Yellow solid; yield 93%;
25
½aꢁD ¼ 32:3 (c 1.04, CHCl3); IR (KBr): 2957, 1740, 1630,
1434, 1213, 1096, 734, 597 cmꢂ1 1H NMR (CDCl3): d
;
1.42 (s, 6H), 3.19 (m, 3H), 4.60–4.73 (m, 2H), 7.13–7.30
(m, 6H), 8.20 (s, 1H), 9.09 (s, 1H); 13C NMR (CDCl3): d
29.2, 33.9, 35.1, 39.3, 75.1, 118.1, 122.5, 123.6, 124.8,
125.5, 127.1, 128.6, 131.2, 135.6, 139.7, 140.6, 140.8,
141.3, 159.4, 164.0, 166.0. ESI-MS [M+H]+: 1131.
4.2.2. Spectral data for L2. Yellow solid; yield 96%;
25
½aꢁD ¼ ꢂ274:8 (c 0.35, CHCl3); IR (KBr): 3322, 3054,
2965, 1613, 1546, 1458, 1377, 1307, 1265, 1074, 858, 841,
1
738 cmꢂ1; H NMR (CDCl3): d 1.04–1.06 (d, J = 4.9 Hz,
6H), 1.93–1.95 (m, 1H), 3.26 (m, 1H), 3.60–3.66 (t,
J = 12 Hz, 1H), 3.94–3.97 (d, J = 12 Hz, 1H), 6.43 (br s,
1H) 8.01–8.04 (d, J = 12 Hz, 1H), 11.57–11.63 (dd,
J = 12 Hz and 12 Hz, 1H); 13C NMR (CDCl3): d 17.9,
19.3, 29.3, 64.4, 70.4, 104.1, 158.5, 184.5; mp slow decom-
position >135 ꢁC; HRMS (ESI) calcd for C24H40N3O6
[M+H]+: Calcd: 466.2917; Obsd: 466.2940.
4.2.8. Spectral data for L8. Yellow solid; yield 93%;
25
½aꢁD ¼ ꢂ153:4 (c 0.94, CHCl3); IR (KBr): 3361, 2950,
2207, 1624, 1574, 1267, 1126, 735, 501 cmꢂ1 1H NMR
;
(CDCl3): d 1.42 (s, 6H), 3.12–3.14 (d, J = 5.4 Hz, 1H),
3.21–3.22 (d, J = 5.0 Hz, 1H), 4.68–4.69 (d, J = 5.0 Hz,
1H), 4.75–4.77 (d, J = 5.0 Hz, 1H), 7.16–7.35 (m, 5H),
7.51 (s, 1H), 7.60 (s, 1H), 8.47 (s, 1H), 14.2 (br s, 1H);
13C NMR (CDCl3): d 29.3, 34.9, 39.5, 72.9, 75.1, 86.4,
90.6, 112.1, 118.5, 124.9, 125.4, 125.6, 126.9, 127.9, 128.7,
133.8, 138.5, 140.5, 140.8, 143.7, 161.9, 166.6. ESI-MS
[M+H]+: 1073.
4.2.3. Spectral data for L3. Orange syrup; yield 91%;
25
½aꢁD ¼ ꢂ172:6 (c 0.85, CHCl3); IR (KBr): 3401, 2959,
1612, 1546, 1461, 1378, 1320, 1265, 1153, 1069, 836,
739 cmꢂ1 1H NMR (CDCl3): d 0.83 (s, 6H), 1.21–1.59
;
(m, 2H), 1.91–1.92 (m, 1H), 1.91–2.00 (dd, J = 16 Hz and
4 Hz, 1H), 3.36–3.38 (t, J = 12 Hz, 1H), 3.76–3.79 (d,
J = 12 Hz, 1H), 6.32 (br s, 1H) 7.86–7.89 (d, J = 12 Hz,
1H), 11.13–11.19 (dd, J = 12 Hz and 12 Hz 1H); 13C
NMR (CDCl3): d 22.6, 23.2, 24.8, 39.7, 62.8, 66.6, 104.0,
157.9, 184.4; HRMS (ESI) calcd for C27H46N3O6
[M+H]+: Calcd: 508.3342; Obsd: 508.3360.
4.3. General procedure for the preparation of chiral
sulfoxides
Vanadyl acetylacetonate (0.01 mmol) and the ligand
(0.006 mmol) were dissolved in dichloromethane (2 mL),
and the solution was stirred for 5 min at room temperature.
To this reaction mixture was added the corresponding sul-