UNEXPECTED CARBON–SELENIUM BOND FORMATION
2903
1
[15]: δP 21.8 ppm, JPH = 481 Hz) or 3b (δP 31.2 ppm,
ACKNOWLEDGMENTS
1JPH = 452 Hz; published data [16]: δP 30.6 ppm, 1JPH
=
This study was performed under financial support
by the Council for Grants at the President of the
Russian Federation (program for state support of leading
scientific schools, project no. NSh-7145.2016.3) using
the facilities of the Baikal Joint Analytical Center
(Siberian Branch, Russian Academy of Sciences).
453 Hz) and some unidentified organophosphorus
compounds (δP 31, 45, 56, 103 ppm). The solvent was
removed under reduced pressure, and the residue was
purified by column chromatography on silica gel
(eluent benzene–Et2O, 1:2) and neutral alumina
(hexane–Et2O, 1:2). Yield 0.098 g (20%) (from 1a),
0.123 g (25%) (from 1b); mixture of E,Z and Z,Z
isomers at a ratio of 1:0.75. Found, %: C 72.98; H
4.51; Se 15.83. C30H22O2Se. Calculated, %: C 73.02; H
4.49; Se 16.00.
REFERENCES
1. Dvorko, M.Yu., Cand. Sci. (Chem.) Dissertation,
Irkutsk, 2008.
2. Glotova, T.E., Dvorko, M.Yu., Gusarova, N.K.,
Arbuzova, S.N., Ushakov, I.A., Kazantseva, T.I., and
Trofimov, B.A., Phosphorus, Sulfur Silicon Relat.
Elem., 2008, vol. 183, no. 6, p. 1396. doi 10.1080/
10426500701648069
3. Dvorko, M.Yu., Glotova, T.E., Ushakov, I.A., and
Gusarova, N.K., Russ. J. Org. Chem., 2010. vol. 46,
no. 4, p. 485. doi 10.1134/S1070428010040056
4. Nogueira, C.W., Zeni, G., and Rocha, J.B.T., Chem.
Rev., 2004, vol. 104, p. 6255. doi 10.1021/cr0406559
5. Organoselenium Chemistry: Between Synthesis and
Biochemistry, Santi, C., Ed., Bentham Science, 2014.
6. Perin, G., Barcellos, A.M., Luz, E.Q., Borges, E.L.,
Jacob, R.G., Lenardao, E.J., Sancineto, L., and Santi, C.,
Molecules, 2017, vol. 22, p. 327. doi 10.3390/
molecules22020327
1
E,Z Isomer. H NMR spectrum (CDCl3), δ, ppm:
6.69 m (2H, o-H, E, 3-Ph), 6.82 m (2H, m-H, E,
3-Ph), 6.94 m (1H, p-H, E, 3-Ph), 7.06 m (2H, o-H, Z,
3-Ph), 7.13 m (2H, m-H, Z, 3-Ph), 7.17 m (1H, p-H, Z,
3-Ph), 7.21 s (1H, =CH, E), 7.27 m (2H, m-H, E, 1-Ph),
7.39 m (1H, p-H, E, 1-Ph), 7.41 s (1H, =CH, Z), 7.47
m (2H, m-H, Z, 1-Ph), 7.55 m (1H, p-H, Z, 1-Ph), 7.67
m (2H, o-H, E, 1-Ph), 8.01 m (2H, o-H, Z, 1-Ph). 13C
NMR spectrum (CDCl3), δC, ppm: 122.8 (=CH, Z),
127.1 (Cm, E, 3-Ph), 127.8 (Cp, E, 3-Ph), 127.9 (Cp, E
and Co, Z, 1-Ph), 128.0 (Cm, Z, 3-Ph), 128.4 (Co, Z,
3-Ph and Cm, E, 1-Ph), 128.4 (Cp, Z, 3-Ph), 128.5 (Co, E,
1-Ph), 128.7 (Co, E, 3-Ph), 131.2 (=CH, E), 132.5 (Cm, Z,
1-Ph), 132.5 (Cp, Z, 1-Ph), 136.8 (Ci, E, 1-Ph), 137.4 (Ci,
Z, 1-Ph), 138.5 (Ci, E, 3-Ph), 140.4 (Ci, Z, 3-Ph), 150.1
(CSe, E), 161.5 (CSe, Z), 188.4 (C=O, Z), 191.6 (C=O,
E). 77Se NMR spectrum (CDCl3): δSe 658.2 ppm.
7. Banerjee, B. and Koketsu, M., Coord. Chem. Rev.,
2017, vol. 339, p. 104. doi 10.1016/j.ccr.2017.03.008
8. Potapov, V.A., Musalov, M.V., Musalova, M.V., and
Amosova, S.V., Curr. Org. Chem., 2016, vol. 20, p. 136.
doi 10.2174/ 1385272819666150810222454
1
Z,Z Isomer. H NMR spectrum (CDCl3), δ, ppm:
6.87 m (4H, o-H, 3-Ph), 7.00 m (4H, m-H, 3-Ph), 7.12 m
(2H, p-H, 3-Ph), 7.34 s (2H, =CH), 7.47 m (4H, m-H,
1-Ph), 7.55 m (2H, p-H, 1-Ph), 8.01 m (4H, o-H, 1-Ph).
13C NMR spectrum (CDCl3), δC, ppm: 125.9 (=CH),
127.7 (Cm, 3-Ph), 127.9 (Co, 3-Ph), 128.0 (Cp, 3-Ph),
128.2 (Co, 1-Ph), 128.5 (Cm, 1-Ph), 132.7 (Cp, 1-Ph),
137.8 (Ci, 1-Ph), 142.1 (Ci, 3-Ph), 159.3 (CSe), 188.8
(C=O). 77Se NMR spectrum (CDCl3): δSe 616.6 ppm.
The 1H, 13C, 31P, and 77Se NMR spectra were recorded
on a Bruker DPX-400 spectrometer at 400.13, 100.62,
161.98, and 76.31 MHz, respectively, using CDCl3 as
solvent and hexamethyldisiloxane (1H, 13C), 85%
H3PO4 (31P), or Me2Se (77Se) as reference. Signals in
the 1H NMR spectra were assigned using homonuclear
shift correlation techniques (COSY, NOESY). Carbon
signals were assigned by analysis of two-dimensional
heteronuclear shift correlations (HSQC, HMBC). The
reactions were carried out under argon, and their
progress was monitored by 31P NMR, following the
conversion of initial phosphine selenides 1a and 1b.
9. Braga, A.L., Galetto, F.Z., Rodrigues, O.E.D., Silveira, C.C.,
and Paixão, M.W., Chirality, 2008, vol. 20, p. 839. doi
10.1002/chir.20554
10. Freudendahl, D.M., Shahzad, S.A., and Wirth, T., Eur. J.
Org. Chem., 2009, p. 1649. doi 10.1002/ejoc.200801171
11. Organoselenium Chemistry. Synthesis and Reactions,
Wirth, T., Ed., Weinheim: Wiley-VCH, 2012.
12. Santoro, S., Azeredo, J.B., Nascimento, V., Sancineto, L.,
Braga, A.L., and Santi, C., RSC Adv., 2014, vol. 4,
p. 31521. doi 10.1039/c4ra04493b
13. Korchevin, N.A., Podkuiko, P.A., Stankevich, V.K.,
Deryagina, E.N., and Trofimov, B.A., Russ. J. Gen.
Chem., 1995, vol. 65, no. 1, p. 85.
14. Potapov, V.A., Elokhina, V.N., Larina, L.I., Yaroshenko, T.I.,
Tatarinova, A.A., and Amosova, S.V., J. Organomet.
Chem., 2009, vol. 694, p. 3679. doi 10.1016/
j.jorganchem.2009.07.023
15. Emmick, T.L. and Letsinger, R.L., J. Am. Chem. Soc.,
1968, vol. 90, p. 3459. doi 10.1021/ja01015a030
16. Arbuzova, S.N., Gusarova, N.K., Malysheva, S.F.,
Brandsma, L., Albanov, A.I., and Trofimov, B.A., Russ.
J. Gen. Chem., 1996, vol. 66, no. 1, p. 54.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 12 2017