Inorganic Chemistry
Article
(
32) Kramer, W. W.; McCrory, C. C. L. Polymer coordination
(48) Hamelin, O.; Menage, S.; Charnay, F.; Chavarot, M.; Pierre, J.-
L.; Pecaut, J.; Fontecave, M. New polydentate ligand and catalytic
properties of the corresponding ruthenium complex during sulfox-
idation and alkene epoxidation. Inorg. Chem. 2008, 47 (14), 6413−
6420.
promotes selective CO reduction by cobalt phthalocyanine. Chem. Sci.
2
2
(
016, 7 (4), 2506−2515.
33) Elgrishi, N.; Chambers, M. B.; Artero, V.; Fontecave, M.
Terpyridine complexes of first row transition metals and electro-
chemical reduction of CO to CO. Phys. Chem. Chem. Phys. 2014, 16
(49) Evans, D. F. 400. The determination of the paramagnetic
susceptibility of substances in solution by nuclear magnetic resonance.
J. Chem. Soc. 1959, 2003−2005.
2
(
27), 13635−13644.
(
34) Elgrishi, N.; Chambers, M. B.; Fontecave, M. Turning it off!
Disfavouring hydrogen evolution to enhance selectivity for CO
(50) Schubert, E. M. Utilizing the Evans method with a super-
conducting NMR spectrometer in the undergraduate laboratory. J.
Chem. Educ. 1992, 69, 62−62.
production during homogeneous CO reduction by cobalt-terpyridine
2
complexes. Chem. Sci. 2015, 6 (4), 2522−2531.
(
35) Chan, S. L. F.; Lam, T. L.; Yang, C.; Yan, S. C.; Cheng, N. M. A
(51) Grant, D. H. Paramagnetic Susceptibility by NMR: The
″Solvent Correction″ Reexamined. J. Chem. Educ. 1995, 72, 39−40.
(52) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal’s
Constants. J. Chem. Educ. 2008, 85, 532−536.
(53) Piguet, C. Paramagnetic Susceptibility by NMR: The ″Solvent
Correction″ Removed for Large Paramagnetic Molecules. J. Chem.
Educ. 1997, 74 (7), 815−816.
(54) Sheldrick, G. M. SHELXL, 5th ed.; Siemens Analytical
Instruments Inc.: Madison, WI, 1994.
robust and efficient cobalt molecular catalyst for CO reduction. Chem.
2
Commun. 2015, 51 (37), 7799−7801.
(
36) Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E.
M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang,
C. J. Covalent organic frameworks comprising cobalt porphyrins for
catalytic CO reduction in water. Science 2015, 349 (6253), 1208−
2
1
213.
(
37) Isaacs, M.; Canales, J. C.; Riquelme, A.; Lucero, M.; Aguirre, M.
J.; Costamagna, J. Contribution of the ligand to the electroreduction of
(55) Sheldrick, G. M. SADABS; Bruker AXS Inc., 2007.
CO catalyzed by a cobalt(II) macrocyclic complex. J. Coord. Chem.
(56) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
2
2
(
003, 56 (14), 1193−1201.
38) Isaacs, M.; Armijo, F.; Ramirez, G.; Trollund, E.; Biaggio, S. R.;
Costamagna, J.; Aguirre, M. J. Electrochemical reduction of CO2
mediated by poly-M-aminophthalocyanines (M = Co, Ni, Fe): poly-
Co-tetraaminophthalocyanine, a selective catalyst. J. Mol. Catal. A:
Chem. 2005, 229 (1−2), 249−257.
(
39) Matsuoka, S.; Yamamoto, K.; Ogata, T.; Kusaba, M.;
Nakashima, N.; Fujita, E.; Yanagida, S. Efficient and Selective Electron
Mediation of Cobalt Complexes with Cyclam and Related Macrocycles
in the p-Terphenyl-Catalyzed Photoreduction of CO . J. Am. Chem.
2
Soc. 1993, 115 (2), 601−609.
(
40) Ogata, T.; Yanagida, S.; Brunschwig, B. S.; Fujita, E. Mechanistic
and Kinetic Studies of Cobalt Macrocycles in a Photochemical CO2
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
̈
Reduction System: Evidence of Co-CO Adducts as intermediates. J.
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
(57) Becke, A. D. Density-Functional Exchange-Energy Approx-
imation with Correct Asymptotic Behavior. Phys. Rev. A: At., Mol., Opt.
Phys. 1988, 38 (6), 3098−3100.
(58) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-
Salvetti Correction-Energy Formula into a Funcitional of the Electron-
Density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37 (2), 785−
789.
(59) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent
electron liquid correlation energies for local spin density calculations: a
critical analysis. Can. J. Phys. 1980, 58 (8), 1200−1211.
(60) Becke, A. D. Density-functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648−5652.
(61) Dunning, T. H. J.; Hay, P. J. In Modern Theoretical Chemistry;
Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3, pp 1−28.
(62) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for
Molecular Calculations - Potnetials for the Transition-Metal Atoms Sc
to Hg. J. Chem. Phys. 1985, 82 (1), 270−283.
(63) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for
molecular calculations. Potentials for main group elements Na to Bi. J.
Chem. Phys. 1985, 82, 284−298.
(64) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for
molecular calculations. Potentials for K to Au including the outermost
core orbitals. J. Chem. Phys. 1985, 82, 299−310.
(65) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal
Solvation Model Based on Solute Electron Density and on a
Continuum Model of the Solvent Defined by the Bulk Dielectric
Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113
(18), 6378−6396.
(66) Hegarty, D.; Robb, M. A. Application of unitary group-methods
to configuration-interaction calculations. Mol. Phys. 1979, 38, 1795−
1812.
2
Am. Chem. Soc. 1995, 117 (25), 6708−6716.
(
41) Ogata, T.; Yamamoto, Y.; Wada, Y.; Murakoshi, K.; Kusaba, M.;
Nakashima, N.; Ishida, A.; Takamuku, S.; Yanagida, S. Phenazine-
Photosensensitized Reduction of CO Mediated by a Cobalt-Cyclam
2
Conmplex Through Electron and Hydrogen-Transfer. J. Phys. Chem.
1
(
995, 99 (31), 11916−11922.
42) Ouyang, T.; Hou, C.; Wang, J.-W.; Liu, W.-J.; Zhong, D.-C.; Ke,
Z.-F.; Lu, T.-B. A Highly Selective and Robust Co(II)-Based
Homogeneous Catalyst for Reduction of CO to CO in CH CN/
2
3
H O Solution Driven by Visible Light. Inorg. Chem. 2017, 56, 7307−
2
7
(
311.
43) Chan, S. L. F.; Lam, T. L.; Yang, C.; Lai, J.; Cao, B.; Zhou, Z. Y.;
Zhu, Q. H. Cobalt(II) tris(2-pyridylmethyl)amine complexes [Co-
+
−
−
−
−
(
TPA)X] bearing coordinating anion (X = Cl , Br , I and NCS ):
synthesis and application for carbon dioxide reduction. Polyhedron
017, 125, 156−163.
44) Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D.; Mackor,
2
(
A. Tetraaza-Macrocyclic Cobalt(II) and Nickel(II) Complexes as
Electron-Transfer Agents in the Photoelectrochemical and Electro-
chemical Reduction of Carbon Dioxide. Recl. Trav. Chim. Pays-Bas
1
(
984, 103, 288−295.
45) Shan, B.; Schmehl, R. Photochemical Generation of Strong
One-Electron Reductants via Light-Induced Electron Transfer with
Reversible Donors Followed by Cross Reaction with Sacrificial
Donors. J. Phys. Chem. A 2014, 118, 10400−10406.
(
46) Braddock, J. N.; Meyer, T. J. Kinetics of the Oxidation of
2+
Fe(H O)6 by Polypyridine Complexes of Ruthenium(III). Negative
2
Enthalpies of Activation. J. Am. Chem. Soc. 1973, 95, 3158−3162.
(
47) Lin, C.-T.; Bottcher, W.; Chou, M.; Creutz, C.; Sutin, N.
Mechanism of the Quenching of the Emission of Substituted
Polypyridineruthenium(II) Complexes by Iron(III), Chromium(III),
and Europium(III) Ions. J. Am. Chem. Soc. 1976, 98, 6536−6544.
L
Inorg. Chem. XXXX, XXX, XXX−XXX