competitive side reactions, c.f., ring bromination, for which their
applications are strictly limited. Therefore, a survey of a facile
and selective new method in water using an alternative suitable
oxidant is of great importance.
Clean and Efficient Benzylic C-H Oxidation in
Water Using a Hypervalent Iodine Reagent:
Activation of Polymeric Iodosobenzene with KBr
in the Presence of Montmorillonite-K10
Recently, hypervalent iodine reagents have received much
attention by virtue of their low toxicity, ready availability, and
reactivity similar to those of heavy metal oxidants.6 In organic
solvents, it is known that few active cyclic iodine(III) com-
pounds show radical reactivities to induce benzylic oxidation.7
A pentavalent iodine reagent, o-iodoxybenzoic acid (IBX), also
oxidizes alkylarenes to arylketones in DMSO.8 These reported
methods, albeit useful and versatile, are restricted in their use
in organic solvents because of low solubilities and reactivities
of the organoiodine compounds in water. Herein, we now report
a promising new method for clean benzylic C-H oxidation in
water by utilizing water-soluble and highly reactive oxidant 1,9
in situ generated from iodosobenzene [PhIO]n and KBr (eq 1).
Toshifumi Dohi,† Naoko Takenaga, Akihiro Goto,
Hiromichi Fujioka, and Yasuyuki Kita*,†
Graduate School of Pharmaceutical Sciences, Osaka
UniVersity, 1-6 Yamada-oka, Suita, Osaka, 565-0871 Japan
ReceiVed June 9, 2008
We have found that unreactive and insoluble polymeric
iodosobenzene [PhIO]n induced aqueous benzylic C-H
oxidation to effectively give arylketones, in the presence of
KBr and montmorillonite-K10 (M-K10) clay. Water-soluble
and reactive species 1 having the unique I(III)-Br bond, in
situ generated from [PhIO]n and KBr, was considered to be
the key radical initiator during the reactions.
In our study for developing new environmentally benign
oxidation reactions, we have been engaged in the practical
utilization of hypervalent iodine reagents in water, especially
with trivalent organoiodine compounds.9,10 In particular, we
have previously found that the activation of the iodosobenzene
polymer ([PhIO]n) by inorganic bromide salts in water is a
powerful method for the effective and unprecedented hyperva-
lent iodine(III)-induced oxidation of alcohols.9 Detailed studies
on the mechanism revealed that the reaction involves the
generation of a water-soluble species 1 having the unique
I(III)-Br bond as a reactive intermediate. On the basis of a
previous report and unique reactivity of hypervalent iodine(III)-
halogen bonds for initiating radical reactions,11 we assumed that
the reaction of 1 in water is the development of a new aqueous
benzylic oxidation via the radical pathway (Scheme 1).12
Development of aqueous-phase reactions is one of the active
fields in organic synthesis due to a recent demand for realization
of green chemical processes.1 Benzylic oxidation is a funda-
mental transformation that is useful for the conversion of
alkylarenes into the corresponding carbonyl compounds. Con-
cerning this important transformation, numerous methods have
been developed using a variety of oxidants and conditions in
organic solvents,2 whereas only a few examples performed in
water have been described thus far. The photocatalytic TiO2/
O2 system3 and the methods using a stoichiometric chromate
(6) Recent reviews, see: (a) Stang, P. J.; Zhdankin, V. V. Chem. ReV. 1996,
96, 1123. (b) Kita, Y.; Takada, T.; Tohma, H. Pure Appl. Chem. 1996, 68, 627.
(c) Kirschning, A. Eur. J. Org. Chem. 1998, 2267. (d) Koser, G. F. Aldrichim.
Acta 2001, 34, 89. (e) Zhdankin, V. V.; Stang, P. J. Chem. ReV. 2002, 102,
2523. (f) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893. (g) Wirth, T. Angew.
Chem., Int. Ed. 2005, 44, 3656.
5
salt4 or NaIO4 were examined, but there still exist serious
drawbacks such as low yields, complicated procedures, and
(7) (a) Ochiai, M.; Ito, T.; Masaki, Y.; Shiro, M. J. Am. Chem. Soc. 1992,
114, 6269. (b) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.;
Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716.
(8) (a) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2001,
123, 3183. (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am.
Chem. Soc. 2002, 124, 2245.
(9) (a) Tohma, H.; Takizawa, S.; Maegawa, T.; Kita, Y. Angew. Chem., Int.
Ed. 2000, 39, 1306. (b) Tohma, H.; Maegawa, T.; Kita, Y. AdV. Synth. Catal.
2002, 344, 328.
(10) (a) Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y. Tetrahedron Lett.
1998, 39, 4547. (b) Tohma, H.; Morioka, H.; Harayama, Y.; Hashizume, M.;
Kita, Y. Tetrahedron Lett. 2001, 42, 6899. For iodosylbenzene (PhIO2), see: (c)
Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. J.
Org. Chem. 1999, 64, 3519.
(11) (a) Banks, D. F.; Huyser, E. S.; Kleinburg, J. J. Org. Chem. 1964, 29,
3692. (b) Tanner, D. D.; Van Bosteien, P. B. J. Org. Chem. 1967, 32, 1517. (c)
Amey, R. L.; Martin, J. C. J. Am. Chem. Soc. 1979, 101, 3060.
† Present address: College of Pharmaceutical Sciences, Ritsumeikan Univer-
sity, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577.
(1) (a) Lindstrom, U. M. Chem. ReV. 2002, 102, 2751. (b) Klijn, J. E.;
Engberts, J. B. F. N. Nature 2005, 435, 746. (c) Li, C. -J.; Chen, L. Chem. Soc.
ReV. 2006, 35, 68.
(2) Recent reports, see: (a) Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson,
D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Org. Lett. 2005, 7, 4549. (b)
Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P. Org. Lett.
2005, 7, 5167. (c) Gupta, M.; Paul, S.; Gupta, R.; Loupy, A. Tetrahedron Lett.
2005, 46, 4957. (d) Khan, A. T.; Parvin, T.; Choudhury, L. H.; Ghosh, S.
Tetrahedron Lett. 2007, 48, 2271. (e) Nakanishi, M.; Bolm, C. AdV. Synth. Catal.
2007, 349, 861, and references cited therein.
(3) Gonzalez, M. A.; Howell, S. G.; Sikdar, S. K. J. Catal. 1999, 183, 159.
(4) Friedman, L.; Fishela, D. L.; Shechter, H. J. Org. Chem. 1965, 30, 1453.
(5) Shaikh, T. M. A.; Emmanuvel, L.; Sudalai, A. J. Org. Chem. 2006, 71,
5043.
10.1021/jo8012435 CCC: $40.75
Published on Web 08/26/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 7365–7368 7365