Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) R. Dach, J. J. Song, F. Roschangar, W. Samstag and
C. H. Senanayake, Org. Process Res. Dev., 2012, 16, 1697;
(b) S. Sharma, J. Das, W. M. Braje, A. K. Dash and S. Handa,
ChemSusChem, 2020, 13, 2859.
Scheme 2 Reactions catalyzed by DES FeCl3Á6H2O/Gly (3 : 1 mol molÀ1).
2 B. H. Lipshutz, Chemistry, 2018, 4, 2004.
´
´
3 R. Kourist and J. Gonzalez-Sabın, ChemCatChem, 2020, 12, 1903.
4 (a) D. Alonso, A. Baeza, R. Chinchilla, G. Guillena, I. M. Pastor and
´
D. J. Ramon, Eur, J. Org. Chem., 2016, 612; (b) E. L. Smith,
A. P. Abbott and K. S. Ryder, Chem. Rev., 2014, 114, 11060;
(c) F. M. Perna, P. Vitale and V. Capriati, Curr. Opin. Green Sustain.
20 h to reach 96% of conversion, whereas in water led to a
negligible yield.17 Some years ago, an efficient synthesis of
2-oxazolines and 2-oxazoles was reported to take place via a
selective cyclization of propargyl amides catalyzed by ZnI2 or
FeCl3 in chlorinated solvents.18 As a proof of concept, N-prop-2-
ynylbenzamide (17, 200 mM) could be quantitatively converted
into 5-methyl-2-phenyloxazole (18) at 40 1C within 4 h in FeCl3Á
6H2O/Gly, and the catalytic system was recycled up to 5 runs
(c 499%). Finally, we ascertained that the hydrolysis of several
methyl benzoate esters (19–22) could smoothly be accom-
plished within 14 h at 70 1C (90–499% conversion) in FeCl3Á
6H2O/Gly to afford the corresponding acids (23–26) in
85–95% yields (ESI†), whereas the traditional FeCl3-promoted
(1.5 equiv. of FeCl3) ester cleavage of 19 took up to 24 h at
115 1C in a sealed tube when using trichloroethylene as the
solvent.19 The Fe-based DES was stable at 70 1C, and thus it
could be efficiently recycled for 5 runs (see the ESI†).
´
´
Chem., 2020, 21, 27; (d) J. Garcıa-Alvarez, Eur. J. Inorg. Chem., 2015,
´
´
5147; (e) J. Garcıa-Alvarez, E. Hevia and V. Capriati, Chem. – Eur. J.,
2018, 24, 14854; ( f ) L. Millia, V. Dall’Asta, C. Ferrara, V. Berbenni,
E. Quartarone, F. M. Perna, V. Capriati and P. Mustarelli, Solid State
Ionics, 2018, 323, 44; (g) C. L. Boldrini, N. Manfredi, F. M. Perna,
V. Capriati and A. Abbotto, ChemElectroChem, 2020, 7, 1707;
(h) C. Vidal, J. Garcıa-Alvarez, A. Hernan-Gomez, A. R. Kennedy
and E. Hevia, Angew. Chem., Int. Ed., 2016, 55, 16145.
´
´
´
´
¨
5 (a) A. E. Unlu¨, A. Arıkaya and S. Takaç, Green Process Synth., 2019,
8, 355; (b) P. Vitale, L. Cicco, I. Cellamare, F. M. Perna, A. Salomone
and V. Capriati, Beilstein J. Org. Chem., 2020, 16, 1915;
(c) H. T. Nguyen, D.-K. N. Chau and P. H. Tran, New J. Chem.,
2017, 41, 12481; (d) W.-H. Zhang, M.-N. Chen, Y. Hao, X. Jiang,
X.-L. Zhou and Z.-H. Zhang, J. Mol. Liq., 2019, 278, 124;
(e) T. T. Nguyen and P. H. Tran, RSC Adv., 2020, 10, 9663.
6 F. Liu, X. Zhao, H. Mou, J. He and T. Mu, Chem. Commun., 2018,
54, 6140.
7 K. H. Meyer and K. Schuster, Chem. Ber., 1922, 55, 819.
8 H. Rupe and E. Kambli, Helv. Chim. Acta, 1926, 9, 672.
9 (a) V. Cadierno and J. Gimeno, Tetrahedron Lett., 2009, 50, 4773;
´
´
´
(b) J. Garcıa-Alvarez, J. Dıez, C. Vidal and C. Vicent, Inorg. Chem.,
2013, 52, 6533.
In conclusion, we report that MS isomerization of pro-
´
´
´
pargylic carbinols takes place in an Fe-based DES acting both 10 (a) J. Garcıa-Alvarez, J. Dıez, J. Gimeno and C. M. Seifried, Chem.
´
´
´
Commun., 2011, 47, 6470; (b) J. Garcıa-Alvarez, J. Dıez, J. Gimeno,
C. M. Seifried and C. Vidal, Inorg. Chem., 2013, 52, 5428.
11 H. Qin, X. Hu, J. Wang, H. Cheng, L. Chen and Z. Qi, Green Energy
Environ., 2020, 5, 8.
as a solvent and a Lewis acid catalyst. The whole process was
accomplished under very mild and bench-type reaction conditions,
which is a recalcitrant challenge in this synthetic transformation,
thereby breaking new grounds for further applications involving
sensitive substrates. Besides streamlining the MS isomerization,
the present work highlights the fascinating properties of the
neoteric mixture FeCl3Á6H2O/Gly as a tool to expand the synthetic
usefulness of iron catalysis in sustainable reaction media.
12 D. Roy, P. Tharra and B. Baire, Asian J. Org. Chem., 2018, 7, 1015.
13 (a) S. Kobayashi, T. Busujima and S. Nagayama, Chem. – Eur. J.,
2000, 6, 3491; (b) J. Becica and G. H. Dobereiner, Org. Biomol. Chem.,
2019, 17, 2055.
14 (a) Y.-F. Lin, C. Wang, B.-L. Hu, P.-C. Qian and X.-G. Zhang, Synlett,
2017, 707; (b) R. Tao, Y. Yin, Y. Duan, Y. Sun, Y. Sun, F. Cheng,
J. Pan, C. Lu and Y. Wang, Tetrahedron, 2017, 73, 1762.
´ ˆ
We thank the Spanish MINECO (projects CTQ2016-81797- 15 F. Jerome and R. Luque, Bio-based Solvents, Wiley Series in Renew-
able Resource, Wiley, Washington, 2017.
16 L. Hintermann and A. Labonne, Synthesis, 2007, 1121.
REDC and CTQ2016-75986-P). J. G.-A. is indebted to PhosAgro/
UNESCO/IUPAC for the award of a ‘‘Green Chemistry for Life
´
17 J. R. Cabrero-Antonino, A. Leyva-Perez and A. Corma, Chem. – Eur. J.,
Grant’’. L. C. and V. C. acknowledge Fondazione Puglia for a
fellowship within the framework of the project ‘‘Development
of Sustainable Synthetic Processes in Unconventional Solvents
for the Preparation of Molecules of Pharmaceutical Interest’’.
2012, 18, 11107.
18 G. C. Senadi, W.-P. Hu, J.-S. Hsiao, J. K. Vandavasi, C.-Y. Chen and
J. J. Wang, Org. Lett., 2012, 14, 4478.
19 X. Lian, S. Fu, T. Ma, S. Li and W. Zeng, Appl. Organomet. Chem.,
2011, 25, 443.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020