Organic Letters
Letter
(7) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Suzuki,
A.; Brown, H. C. Organic Syntheses via Boranes: Suzuki Coupling, Vol. 3;
Aldrich: Milwaukee, 2003.
(8) (a) Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007,
129, 758. (b) Noguchi, H.; Shioda, T.; Chou, C.-M.; Suginome, M. Org.
Lett. 2008, 10, 377.
(9) (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38,
2413. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am.
Chem. Soc. 1999, 121, 9550.
AUTHOR INFORMATION
■
Corresponding Author
Present Address
§Chemical Biology Team, Imaging Chemistry Group, Division of
Bio-Function Dynamics Imaging, RIKEN Center for Life Science
Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-
ku, Kobe 650-0047, Japan.
(10) See Supporting Information for details.
(11) Attempts for coupling reaction using B sources without dan
protection were unsuccessful. See Supporting Information for details.
(12) (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.
(b) Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288.
Notes
The authors declare no competing financial interest.
(13) Friedman, A. A.; Panteleev, J.; Tsoung, J.; Huynh, V.; Lautens, M.
Angew. Chem., Int. Ed. 2013, 52, 9755.
(14) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60,
7508.
(15) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534.
(16) The X-ray crystallographic data for compounds 2n (CCDC
1020935) and 11 (CCDC 1020936) can be obtained free of charge from
the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.
(17) Attempts for cross-coupling of 2-bromophenol with 7 resulted in
a low yield of 2a (approximately 10% yield) even with the use of any of
the catalytic systems including Pd(PPh3)4, Pd(OAc)2/CyJohnPhos,
Pd(OAc)2/P(1-Ad)2(n-Bu), and Pd[P(t-Bu)3]2.
(18) (a) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed.
2000, 39, 4153. (b) Rueping, M.; Sugiono, E.; Steck, A.; Theissmann, T.
Adv. Synth. Catal. 2010, 352, 281.
(19) The cross-coupling of 3,3′-bis(pinacolatoboryl)-[1,1′-binaph-
thalene]-2,2′-diol with 4a (2 equiv) gave only a trace amount of 2p even
with the use of any of the catalytic systems such as Pd(PPh3)4,
Pd(OAc)2/CyJohnPhos, and P(1-Ad)2(n-Bu).
(20) (a) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958,
3073. (b) Dewar, M. J. S.; Dewar, R. B. K.; Gaibel, Z. L. F. Org. Synth.
1966, 46, 65. (c) Komorowska, M.; Niedenzu, K.; Weber, W. Inorg.
Chem. 1990, 29, 289. (d) Harris, K. D. M.; Kariuki, B. M.;
Lambropoulos, C.; Philp, D.; Robinson, J. M. A. Tetrahedron 1997,
53, 8599. For some related compounds, see: (e) Paetzold, P.; Stanescu,
ACKNOWLEDGMENTS
■
The authors thank Ms. Ayako Hosoya at Tokyo Medical and
Dental University for HRMS analyses, and Central Glass Co.,
Ltd. for their generous gift of Tf2O. This work was supported by
Platform for Drug Discovery, Informatics, and Structural Life
Science from MEXT, Japan; JSPS KAKENHI Grant Number
24651257 (T.H.); and the Terumo Life Science Foundation
(Y.S.).
REFERENCES
■
(1) (a) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem.,
Int. Ed. 1996, 35, 1910. (b) Ni, N.; Wang, B. Applications of Boronic
Acids in Chemical Biology and Medicinal Chemistry. In Boronic Acids:
Preparation and Applications in Organic Synthesis, Medicine and Materials,
2nd ed.; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2011; Vol. 1, pp 591−
620. (c) Yamaguchi, S.; Wakamiya, A. Pure Appl. Chem. 2006, 78, 1413.
(d) James, T. D., Philips, M. D.; Shinkai, S. Boronic acids in saccharide
recognition; RSC Publishing: Cambridge, 2006. (e) Jin, S.; Cheng, Y.;
Reid, S.; Li, M.; Wang, B. Med. Res. Rev. 2010, 30, 171. (f) Fossey, J. S.;
D’Hooge, F.; van den Elsen, J. M. H.; Morais, M. P. P.; Pascu, S. I.; Bull,
S. D.; Marken, F.; Jenkins, A. T. A.; Jiang, Y.-B.; James, T. D. Chem. Rec.
2012, 120, 464.
(2) (a) Dowlut, M.; Hall, D. G. J. Am. Chem. Soc. 2006, 128, 4226.
(b) Berube, M.; Dowlut, M.; Hall, D. G. J. Org. Chem. 2008, 73, 6471.
́ ́
(c) Ellis, G. A.; Palte, M. J.; Raines, R. T. J. Am. Chem. Soc. 2012, 134,
C.; Stubenrauch, J. R.; Bienmuller, M.; Englert, U. Z. Anorg. Allg. Chem.
̈
2004, 630, 2632. (f) Molander, G. A.; Wisniewski, S. R. J. Org. Chem.
3631.
2014, 79, 8339 and references cited therein.
́
(3) (a) Rock, F. L.; Mao, W.; Yaremchuk, A.; Tukalo, M.; Crepin, T.;
(21) Guram, A. S.; King, A. O.; Allen, J. G.; Wang, X.; Schenkel, L. B.;
Chan, J.; Bunel, E. E.; Faul, M. M.; Larsen, R. D.; Martinelli, M. J.;
Reider, P. J. Org. Lett. 2006, 8, 1787.
Zhou, H.; Zhang, Y.-K.; Hernandez, V.; Akama, T.; Baker, S. J.; Plattner,
J. J.; Shapiro, L.; Martinis, S. A.; Benkovic, S. J.; Cusack, S.; Alley, M. R.
K. Science 2007, 316, 1759. (b) Seiradake, E.; Mao, W.; Hernandez, V.;
Baker, S. J.; Plattner, J. J.; Alley, M. R. K.; Cusack, S. J. Mol. Biol. 2009,
(22) For the total synthesis of gilvocarcins, see: (a) Matsumoto, T.;
Hosoya, T.; Suzuki, K. J. Am. Chem. Soc. 1992, 114, 3568. (b) Hosoya,
T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116,
1004. (c) Futagami, S.; Ohashi, Y.; Imura, K.; Hosoya, T.; Ohmori, K.;
Matsumoto, T.; Suzuki, K. Tetrahedron Lett. 2000, 41, 1063. For the
synthesis of defucogilvocarcins, see: (d) Findlay, J. A.; Daljeet, A.;
Murray, P. J.; Rej, R. N. Can. J. Chem. 1987, 65, 427. (e) McKenzie, T.
C.; Hassen, W.; Macdonald, S. J. F. Tetrahedron Lett. 1987, 28, 5435.
(f) Patten, A. D.; Nguyen, N. H.; Danishefsky, S. J. J. Org. Chem. 1988,
53, 1003. (g) McGee, L. R.; Confalone, P. N. J. Org. Chem. 1988, 53,
3695. (h) Jung, M. E.; Jung, Y. H. Tetrahedron Lett. 1988, 29, 2517.
(i) Hart, D. J.; Merriman, G. H. Tetrahedron Lett. 1989, 30, 5093.
(j) Deshpande, P. P.; Martin, O. R. Tetrahedron Lett. 1990, 31, 6313.
(k) James, C. A.; Snieckus, V. Tetrahedron Lett. 1997, 38, 8149.
(l) Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K. Org. Lett. 2004, 6,
2503. (m) James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080.
(n) Cortezano-Arellano, O.; Cordero-Vargas, A. Tetrahedron Lett. 2010,
51, 602. (o) Nandaluru, P. R.; Bodwell, G. J. J. Org. Chem. 2012, 77,
8028. (p) Pahari, P.; Kharel, M. K.; Shepherd, M. D.; van Lanen, S. G.;
Rohr, J. Angew. Chem., Int. Ed. 2012, 51, 1216.
́ ́
390, 196. (c) Pal, A.; Berube, M.; Hall, D. G. Angew. Chem., Int. Ed. 2010,
49, 1492. (d) Zajdlik, A.; Wang, Z.; Hickey, J. L.; Aman, A.; Schimmer,
A. D.; Yudin, A. K. Angew. Chem., Int. Ed. 2013, 52, 8411. (e) Knack, D.
H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec, M.; Liu, S.-Y.;
Heider, J. Angew. Chem., Int. Ed. 2013, 52, 2599.
(4) (a) Dewar, M. J. S.; Dietz, R. Tetrahedron Lett. 1959, 21. (b) Dewar,
M. J. S.; Dietz, R. J. Chem. Soc. 1960, 1344. (c) Davis, F. A.; Dewar, M. J.
S. J. Org. Chem. 1968, 33, 3324. (d) Greig, L. M.; Kariuki, B. M.;
Habershon, S.; Spencer, N.; Johnston, R. L.; Harris, K. D. M.; Philp, D.
New J. Chem. 2002, 26, 701. For some related compounds, see:
(e) Grisdale, P. J.; Williams, J. L. R. J. Org. Chem. 1969, 34, 1675.
(f) Maringgele, W.; Meller, A.; Noltemeyer, M.; Sheldrick, G. M. Z.
Anorg. Allg. Chem. 1986, 536, 24. (g) Arcus, V. L.; Main, L.; Nicholson,
B. K. J. Organomet. Chem. 1993, 460, 139. (h) Chen, J.; Bajko, Z.; Kampf,
J. W.; Ashe, A. J., III. Organometallics 2007, 26, 1563.
(5) (a) Zhou, Q. J.; Worm, K.; Dolle, R. E. J. Org. Chem. 2004, 69, 5147.
(b) He, J.; Crase, J. L.; Wadumethrige, S. H.; Thakur, K.; Dai, L.; Zou, S.;
Rathore, R.; Hartley, C. S. J. Am. Chem. Soc. 2010, 132, 13848.
(c) Mathew, S. M.; Engle, J. T.; Ziegler, C. J.; Hartley, C. S. J. Am. Chem.
Soc. 2013, 135, 6714.
(23) Matsumoto, T.; Hosoya, T.; Katsuki, M.; Suzuki, K. Tetrahedron
Lett. 1991, 32, 6735.
(24) Sumida, Y.; Kato, T.; Hosoya, T. Org. Lett. 2013, 15, 2806.
(6) Dohi, T.; Kamitanaka, T.; Watanabe, S.; Hu, Y.; Washimi, N.; Kita,
Y. Chem.Eur. J. 2012, 18, 13614.
6243
dx.doi.org/10.1021/ol5031734 | Org. Lett. 2014, 16, 6240−6243