2716
A. S. Balna6es et al. / Tetrahedron Letters 44 (2003) 2713–2716
deprotection of the primary alcohol and conversion
into the allylic bromide 33 was carried out as before.
Macrocyclisation was achieved using syringe pump
addition of sodium hexamethyldisilazide and simulta-
neous removal of the phenyl sulfone and BOM groups
gave the required bicyclic trienyl alcohol 34 in a 45%
yield over both the cyclisation and reduction steps.
6. (a) Marshall, J. A. In Comp. Organic Synthesis; Trost, B.
M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 3, Chapter 3.11; (b) Mikami, K.; Nakai, T. Synthesis
1991, 594; (c) Nakai, T.; Mikami, K. Org. React. 1994,
46, 105.
7. Marsden, A.; Thomas, E. J. Arkivoc 2002, part ix.
8. Nakai, T.; Mikami, K.; Taya, S.; Fujita, Y. J. Am. Chem.
Soc. 1981, 103, 6492.
The alcohol 34 corresponds to the key intermediate
ketone 5 albeit with the opposite configuration at C-14.
Present work is concerned with the development of the
final stages of a synthesis of phomactins from this
alcohol.
9. (a) Acheson, R. M.; Flowerday, R. F. J. Chem. Soc.,
Perkin Trans. 1 1974, 2339; (b) Linker, T.; Frohlich, L. J.
Am. Chem. Soc. 1995, 117, 2694.
10. Schultz, A. G.; Taveras, A. G.; Harrington, R. E. Tetra-
hedron Lett. 1988, 29, 3907.
11. The stereochemistry of the major enone 12 was confirmed
by X-ray diffraction. Details will be published in a full
paper.
Acknowledgements
12. The stereochemistry of the reduction product 14 was
confirmed by NOE studies, e.g. a significant enhancement
of CHMe on irradiation of CHOH.
We thank the EPSRC for support (to A.S.B., G.M. and
P.D.P.S.), GlaxoSmithKline and Merck Sharp and
Dohme for CASE awards (to P.D.P.S. and G.M.,
respectively), Dr. D. Morgan (GSK) and Dr. L. Street
(MSD) for helpful discussions, and the EPSRC mass
spectrometry service at Swansea for mass spectra.
13. Eis, M. J.; Wrobel, J. E.; Ganem, B. J. Am. Chem. Soc.
1984, 106, 3693.
14. Aspinall, H. C.; Greeves, N.; Lee, W.-M.; McIver, E. G.;
Smith, P. M. Tetrahedron Lett. 1997, 38, 4679.
15. (a) Hardy, P. M.; Rydon, H. N.; Thompson, R. C.
Tetrahedron Lett. 1968, 2525; (b) Ferezou, J. P.; Julia, M.
Tetrahedron 1990, 46, 475.
References
16. The configuration at C-1 (phomactin numbering) in both
22 and 23 also follows from their successful conversion
into the bicyclic intermediates 27 and 34.
17. An alternative approach was also investigated which
involved cyclisation of ether 21 to give the macrocyclic
ether i. However, attempts to effect the required 2,3-Wit-
tig rearrangement of i were unsuccessful, perhaps because
of ring strain in the product. Details will be published in
a full paper.
1. (a) Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya,
K.; Kuwano, H.; Hata, T.; Hanzawa, H. J. Am. Chem.
Soc. 1991, 113, 5463; (b) Chu, M.; Patel, M. G.; Gullo,
V. P.; Truumees, I.; Puar, M. S. J. Org. Chem. 1992, 57,
5817; (c) Chu, M.; Truumees, I.; Gunnarsson, I.; Bishop,
W. R.; Kreutner, W.; Horan, A. C.; Patel, M. G.; Gullo,
V. P.; Puar, M. S. J. Antibiot. 1993, 46, 554; (d) Sugano,
M.; Sato, A.; Iijima, Y.; Furuya, K.; Haruyama, H.;
Yoda, K.; Hata, T. J. Org. Chem. 1994, 59, 564; (e)
Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Kuwano,
H.; Hata, T. J. Antibiot. 1995, 48, 1188.
2. (a) Foote, K. M.; Hayes, C. J.; Pattenden, G. Tetra-
hedron Lett. 1996, 37, 275; (b) Chen, D.; Wang, J.; Totah,
N. I. J. Org. Chem. 1999, 64, 1776; (c) Seth, P. P.; Totah,
N. I. J. Org. Chem. 1999, 64, 8750; (d) Seth, P. P.; Chen,
D.; Wang, J.; Gao, X.; Totah, N. I. Tetrahedron 2000, 56,
10185; (e) Seth, P. P.; Totah, N. I. Org. Lett. 2000, 2,
2507; (f) Kallan, N. C.; Halcomb, R. L. Org. Lett. 2000,
2, 2687; (g) Chemler, S. R.; Danishefsky, S. J. Org. Lett.
2000, 2, 2695; (h) Chemler, S. R.; Iserloh, U.; Danishef-
sky, S. J. Org. Lett. 2001, 3, 2949; (i) Foote, K. M.; John,
M.; Pattenden, G. Synlett 2001, 365; (j) Mi, B.;
Maleczka, R. E., Jr. Org. Lett. 2001, 3, 1491; (k)
Houghton, T. J.; Choi, S.; Rawal, V. H. Org. Lett. 2001,
3, 3615; (l) Mohr, P. J.; Halcomb, R. L. Org. Lett. 2002,
4, 241.
3. Miyaoka, H.; Saka, Y.; Miura, S.; Yamada, Y. Tetra-
hedron Lett. 1996, 37, 7107.
4. Goldring, W. P. D.; Pattenden, G. Chem. Commun. 2002,
1736; Halcomb, R. L.; Mohr, P. J. J. Am. Chem. Soc.
2003, 125, in press.
5. The spontaneous rearrangement of Sch. 49028 into
phomactin A was observed by Pattenden et al. during
their synthesis, see Ref. 4.
18. Coupling constants and NOE observations established
the configurations indicated at C-2 and C-10 (phomactin
numbering) in 26.
19. Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J.
Am. Chem. Soc. 1967, 89, 4245.
20. In Rawal’s approach to the phomactins, conjugate addi-
tion of lithium dimethylcuprate to a bicyclic ketone
analogous to that which would be formed on oxidation
of 27, gave a 2.5:1 mixture of the (Z)- and (E)-enones in
favour of the unwanted (Z)-isomer; see Ref. 2k.
21. Gardiner, J. M.; Giles, P. E. Tetrahedron Lett. 1995, 36,
7519.
22. Dieter, R. K.; Silks, L. A., III J. Org. Chem. 1986, 51,
4687.