Radiation Chemical Studies of Methionine
Chem. Res. Toxicol., Vol. 23, No. 1, 2010 263
(19) Ohara, A. (1966) On the radiolysis of methionine in aqueous solution
by gamma irradiation. J. Radiat. Res. 7, 18–27.
(20) Xu, G., and Chance, M. R. (2005) Radiolytic modification of sulfur-
containing amino acid residues in model peptides: Fundamental studies
for protein footprinting. Anal. Chem. 77, 2437–2449.
(21) Lipinski, B. (2002) Evidence in support of a concept of reductive stress.
Br. J. Nutr. 87, 93–94.
(22) Ferreri, C., Manco, I., Faraone-Mennella, M. R., Torreggiani, A.,
Tamba, M., Manara, S., and Chatgilialoglu, C. (2006) The reaction
of hydrogen atoms with methionine residues: A model of reductive
radical stress causing tandem protein-lipid damage. ChemBioChem
7, 1738–1744.
(23) Mozziconacci, O., Bobrowski, K., Ferreri, C., and Chatgilialoglu, C.
(2007) Reaction of hydrogen atom with Met-enkephalin and related
peptides. Chem.sEur. J. 13, 2029–2033.
(24) Ferreri, C., Chatgilialoglu, C., Torreggiani, A., Salzano, A. M.,
Renzone, G., and Scaloni, A. (2008) The reductive desulfurization of
Met and Cys residues in bovine RNAse A associated with the trans
lipid formation in a mimetic model of biological membranes. J.
Proteome Res. 7, 2007–2015.
(25) Spinks, J. W. T., and Woods, R. J. (1990) An Introduction to Radiation
Chemistry, 3rd ed., p 100, Wiley, New York.
(26) Greene, J., Henderson, J. W., Jr., and Wikswo, J. P. (2009) Rapid
and precise determination of cellular amino acid flux rates using HPLC
with automated deivatization with absorbance detection. Agilent
5990-3283EN.pdf.
(27) Bartolomeo, M. P., and Maisano, F. (2006) Validation of a reversed-
phase HPLC method for quantitative amino acid analysis. J. Biomol.
Tech. 17, 131–137.
(28) Cardoso, D. R., Bettin, S. M., Reche, R. V., Lima-Neto, B. S., and
Franco, D. W. (2003) HPLC-DAD analysis of ketones as their 2,4-
dinitrophenylhydrazones in Brazilian sugar-cane spirits and rum. J.
Food Compos. Anal. 16, 563–573.
(29) Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.
(1988) Critical review of rate constants for reactions of hydrated
electrons, hydrogen atoms and hydroxyl radicals (•OH)/•O-) in aqueous
solution. J. Phys. Chem. Ref. Data 17, 513–886.
(30) Ross, A. B., Mallard, W. G., Helman, W. P., Buxton, G. V., Huie,
R. E., and Neta, P. (1998) NDRLNIST Solution Kinetic Database-
Ver. 3, Notre Dame Radiation Laboratory and NIST Standard
Reference Data, Notre Dame, IN, and Gaithersburg, MD.
(31) Sysak, P. K., Foote, C. S., and Ching, T.-Y. (1977) Chemistry of singlet
oxygen-XXV. Photooxygenation of methionine. Photochem. Photobiol.
26, 19–27.
CAL)” are kindly acknowledged. We thank Dr. Massimo
Capobianco and Dr. Quinto G. Mulazzani for many useful
discussions.
Supporting Information Available: Detailed experimental
part on product studies. This material is available free of charge
References
(1) Vogt, W. (1995) Oxidation of methionyl residues in proteins: Tools,
targets and reversal. Free Radical Biol. Med. 18, 93–105.
(2) Stadtman, E. R., Moskovitz, J., and Levine, R. L. (2003) Oxidation
of methionine residues of proteins: biological consequences. Antioxid.
Redox Signaling 5, 577–582.
(3) Poole, L. B., Karplus, P. A., and Claiborne, A. (2004) Protein sulfenic
acids in redox signaling. Annu. ReV. Pharmacol. Toxicol. 44, 325–347.
(4) Weissbach, H., Resnick, L., and Brot, N. (2005) Methionine sulfoxide
reductases: History and cellular role in protecting against oxidative
damage. Biochim. Biophys. Acta 1703, 203–212.
(5) Luo, S., and Levine, R. L. (2009) Methionine in proteins defends
against oxidative stress. FASEB J. 23, 464–472.
(6) Stadtman, E. R., Van Remmen, H., Richardson, A., Wehr, N. B., and
Levine, R. L. (2005) Methionine oxidation and aging. Biochim.
Biophys. Acta 1703, 135–140.
(7) Davies, M. J. (2005) Oxidative environment and protein damage.
Biochim. Biophys. Acta 1703, 93–109.
(8) Hawkins, C. L., and Davies, M. J. (2001) Generation and propagation
of radical reactions on proteins. Biochim. Biophys. Acta 1504, 196–
219.
(9) Davies, M. J., Fu, S., Wang, H., and Dean, R. T. (1999) Stable markers
of oxidant damage to proteins and their application in the study of
human disease. Free Radical Biol. Med. 27, 1151–1163.
(10) Jensen, J. L., Miller, B. L., Zhang, X., Hug, G. L., and Scho¨neich, C.
(1997) Oxidation of threonylmethionine by peroxynitrite. Quantifica-
tion of the one-electron transfer pathway by comparison to one-electron
photooxidation. J. Am. Chem. Soc. 119, 4749–4757.
(11) Halliwell, B., and Gutteridge, J. M. C. (1999) Free Radicals in Biology
and Medicine, 3rd ed., Oxford Univesrity Press, Oxford.
(12) Scho¨neich, C. (2005) Methionine oxidation by reactive oxygen species:
Reaction mechanisms and relevance to Alzheimers’s disease. Biochim.
Biophys. Acta 1703, 111–119.
(13) Hiller, K.-O., Masloch, B., Go¨bl, M., and Asmus, K.-D. (1981)
Mechanism of the OH• radical induced oxidation of methionine in
aqueous solution. J. Am. Chem. Soc. 103, 2734–2743.
(32) Bielski, B. H., Cabelli, D. E., Arudi, R. L., and Ross, A. B. (1985)
(14) Hiller, K.-O., and Asmus, K.-D. (1983) Formation and reduction
reactions of R-amino radicals derived from methionine and its
derivatives in aqueous solutions. J. Phys. Chem. 87, 3682–3688.
(15) Asmus, K.-D., Go¨bl, M., Hiller, K.-O., Mahling, S., and Mo¨nig, J.
(1985) SN and SO three-electron-bonded radicals and radical cations
in aqueous solutions. J. Chem. Soc., Perkin Trans. 2, 641–646.
(16) Scho¨neich, C., and Bobrowski, K. (1994) Reaction of hydroxysul-
furanyl radical with molecular oxygen: electron transfer vs addition.
J. Phys. Chem. 98, 12613–12620.
(17) Mere´nyi, G., Lind, J., and Engman, L. (1996) The dimethylhydrox-
ysulfuranyl radical. J. Phys. Chem. 100, 8975–8881.
(18) Scho¨neich, C., Aced, A., and Asmus, K.-D. (1993) Mechanism of
oxidation of aliphatic thioethers to sulfoxides by hydroxyl radicals.
The importance of molecular oxygen. J. Am. Chem. Soc. 115, 11376–
11383.
-
Reactivity of HO2/O2 radicals in aqueous solution. J. Phys. Chem.
Ref. Data 14, 1041–1051.
(33) Miller, B. L., Kuczeta, K., and Scho¨neich, C. (1998) One-electron
photooxidation of N-methionyl peptides. Mechanism of sulfoxide and
azasulfonium diastereomer formation through reaction of sulfide radical
cation complexes with oxygen or superoxide. J. Am. Chem. Soc. 120,
3345–3356.
(34) Parker, J. E., Willson, R. L., Bahnemann, D., and Asmus, K.-D. (1980)
Electron transfer reactions of halogenated aliphatic peroxyl radicals:
Measurement of absolute rate constants by pulse radiolysis. J. Chem.
Soc., Perkin Trans. 2, 296–299.
TX900427D