Communication
ChemComm
+
+
ꢀ
40 1C did not produce any detectible amount of NH
4
or N
by H NMR spectroscopy. Furthermore, treatment of a THF
solution of complexes 1, 2, or 3 with 100 equiv. H SO at 25 1C
H
2 5
6 W. Hussain, G. J. Leigh, H. M. Ali, C. J. Pickett and D. A. Rankin,
1
21
J. Chem. Soc., Dalton Trans., 1984, 1703–1708.
7
(a) H. H. Karsch, Angew. Chem., Int. Ed., 1977, 16, 56–57;
(b) G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett and
M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 5954–5956.
2
4
+
+ 22
did not form detectible amounts of NH4 or N H .
2
5
8
M. T. Mock, S. Chen, R. Rousseau, M. J. O’Hagan, W. G. Dougherty,
W. S. Kassel, D. L. DuBois and R. M. Bullock, Chem. Commun., 2011,
In conclusion, we prepared N complexes of Cr, Mo, and W
with identical ligands and examined their spectroscopic and
electrochemical properties to more clearly understand the
2
47, 12212–12214.
9 M. T. Mock, A. W. Pierpont, J. D. Egbert, M. O’Hagan, S. Chen,
R. M. Bullock, W. G. Dougherty, W. S. Kassel and R. Rousseau, Inorg.
Chem., 2015, 54, 4827–4839.
metal-dependent N
complex contains the most activated N
negative oxidation potential of the series. Greater N
for 1 may reflect better dp overlap with N2 anti-bonding
2
activation and reactivity. The Cr–N
ligands and the most
activation
2
2
10 M. T. Mock, S. Chen, M. O’Hagan, R. Rousseau, W. G. Dougherty,
W. S. Kassel and R. M. Bullock, J. Am. Chem. Soc., 2013, 135,
2
1
1493–11496.
1
1 The group 6 complexes cis-[M(N ) (PMe ) ] (M = Cr, Mo, W) have
2 2 3 4
+
+
orbitals. Cr was the only complex to form NH4 and N H
from reduction of the N ligands upon addition of acid. Future
2
5
been reported. The Cr analogue is unstable under ambient condi-
tions (ref. 7a); (a) E. Carmona, A. Galindo, M. L. Poveda and
R. D. Rodgers, Inorg. Chem., 1985, 24, 4033–4039; (b) E. Carmona,
J. M. Marin, M. L. Poveda, J. L. Atwood and R. D. Rogers, J. Am.
Chem. Soc., 1983, 105, 3014–3022.
2
studies aim to identify Cr–N
pathway, and to utilize Cr to develop an electrocatalytic system
for N reduction to N and NH
x y 2
H intermediates in the N reduction
H
2 4
3
.
12 H. Gailus, C. Woitha and D. Rehder, J. Chem. Soc., Dalton Trans.,
994, 3471–3477.
2
1
This work was supported as part of the Center for Molecular
Electrocatalysis, an Energy Frontier Research Center funded by
the U.S. Department of Energy (U. S. DOE), Office of Science,
Office of Basic Energy Sciences. Pacific Northwest National
Laboratory is operated by Battelle for the U. S. DOE.
1
3 L. A. Labios, C. J. Weiss, J. D. Egbert, S. Lense, R. M. Bullock,
W. G. Dougherty, W. S. Kassel and M. T. Mock, Z. Anorg. Allg. Chem.,
2015, 641, 105–117.
1
4 (a) M. Yuki, Y. Miyake, Y. Nishibayashi, I. Wakiji and M. Hidai,
Organometallics, 2008, 27, 3947–3953; (b) C. J. Weiss, A. N. Groves,
M. T. Mock, W. G. Dougherty, W. S. Kassel, M. L. Helm, D. L. DuBois
and R. M. Bullock, Dalton Trans., 2012, 41, 4517–4529.
1
5 (a) F. Tuczek, K. H. Horn and N. Lehnert, Coord. Chem. Rev., 2003,
Notes and references
245, 107–120; (b) D. F. Shriver, Acc. Chem. Res., 1970, 3, 231–238;
1
(a) D. V. Yandulov and R. R. Schrock, Science, 2003, 301, 76–78;
(c) G. J. Leigh, Acc. Chem. Res., 1992, 25, 177–181.
(
(
(
b) B. A. MacKay and M. D. Fryzuk, Chem. Rev., 2004, 104, 385–401; 16 F. A. Cotton and C. S. Kraihanzel, J. Am. Chem. Soc., 1962, 84, 4432–4438.
c) R. R. Schrock, Angew. Chem., Int. Ed., 2008, 47, 5512–5522; 17 (a) D. Sellmann, Angew. Chem., Int. Ed., 1974, 13, 639–649;
d) K. Arashiba, Y. Miyake and Y. Nishibayashi, Nat. Chem., 2011,
(b) R. Hoffmann and D. L. DuBois, Nouv. J. Chem., 1977, 1, 479–492.
, 120–125; (e) J. S. Anderson, J. Rittle and J. C. Peters, Nature, 2013, 18 S. Donavon-Mtunzi, R. L. Richards and J. Mason, J. Chem. Soc.,
01, 84–87; ( f ) K. Grubel, W. W. Brennessel, B. Q. Mercado and
Dalton Trans., 1984, 469–474.
3
5
+
+
2 5 4
P. L. Holland, J. Am. Chem. Soc., 2014, 136, 16807–16816; (g) I. Coric, 19 The peak area of N H (broad singlet, 10.8 ppm) and NH (1 : 1 : 1
B. Q. Mercado, E. Bill, D. J. Vinyard and P. L. Holland, Nature, 2015,
triplet, 7.0 ppm, JHN = 51 Hz) were determined by manual integra-
tion and by line-fitting analysis using the CRAFT NMR software
program.
5
4
26, 96–99; (h) J. Rittle and J. C. Peters, J. Am. Chem. Soc., 2016, 138,
243–4248; (i) T. J. Del Castillo, N. B. Thompson and J. C. Peters,
15N
15
+
15
+
15
J. Am. Chem. Soc., 2016, 138, 5341–5350.
20 Protonolysis of 1
afforded
N
2
H
5
and NH
4
by N NMR
2
3
V. Smil, Enriching the Earth: Fritz Haber, Carl Bosch, and the Trans-
formation of World Food Production, MIT Press, Cambridge, MA,
spectroscopy at ꢀ326 ppm and ꢀ363 ppm, respectively. In addition,
Et 2,6-F2-Bn Et
1
31
[HP N
spectroscopy.
P ][OTf ] was observed by
H
and
P NMR
2
001.
(a) S. Licht, B. Cui, B. Wang, F. F. Li, J. Lau and S. Liu, Science, 2014, 21 The formation of M–H products for 2 and 3 was apparent based
31
3
45, 637–640; (b) C. J. van der Ham, M. T. Koper and
upon multiplet resonances (due to P coupling) in the high-field
1
D. G. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183–5191.
region of the H NMR spectra.
4
5
B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean and 22 (a) Y. Tanabe, S. Kuriyama, K. Arashiba, Y. Miyake, K. Nakajima and
L. C. Seefeldt, Chem. Rev., 2014, 114, 4041–4062.
J. Chatt, J. R. Dilworth and R. L. Richards, Chem. Rev., 1978, 78,
Y. Nishibayashi, Chem. Commun., 2013, 49, 9290–9292; (b) K. Arashiba,
S. Kuriyama, K. Nakajima and Y. Nishibayashi, Chem. Commun., 2013,
49, 11215–11217.
5
89–625.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016