Page 5 of 6
Journal of the American Chemical Society
from nitrogen and water catalyzed by flower-like gold
microstructures. ChemSusChem, 2018, 11, 3480–3485.
(20) Li, S.-J.; Bao, D.; Shi, M.-M.; Wulan, B.-R.; Yan, J.-M.; Jiang,
(30) Su, H.; Zhang, K.-X.; Zhang, B.; Wang, H.-H.; Yu, Q.-Y.;
Li, X.-H.; Antonietti, M.; Chen, J.-S. Activating cobalt
nanoparticles via the Mott–Schottky effect in nitrogen-rich
carbon shells for base-free aerobic oxidation of alcohols to
esters. J. Am. Chem. Soc. 2017, 139, 811–818.
(31) Li, X.-H.; Chen, J.-S.; Wang, X.; Sun, J.; Antonietti, M.
3 4
Metal-free activation of dioxygen by graphene/g-C N
nanocomposites: Functional dyads for selective oxidation of
saturated hydrocarbons. J. Am. Chem. Soc. 2011, 133, 8074–
8077.
(32) Liu, Y.-X.; Wang, H.-H.; Zhao, T.-J.; Zhang, B.; Su, H.; Xue,
Z.-H.; Li, X.-H.; Chen, J.-S. Schottky barrier induced coupled
interface of electron-rich N-doped carbon and electron-
deficient Cu: In-built Lewis acid–base pairs for highly efficient
1
2
3
4
5
6
7
8
9
Q. Amorphizing of Au nanoparticles by CeO
support towards highly efficient electrocatalyst for N
reduction under ambient conditions. Adv. Mater. 2017, 29,
700001.
21) Shi, M.-M.; Bao, D.; Wulan, B.-R.; Li, Y.-H.; Zhang, Y.-F.;
Yan, J.-M.; Jiang, Q. Au sub-nanoclusters on TiO toward
highly efficient and selective electrocatalyst for N conversion
to NH at ambient conditions. Adv. Mater. 2017, 29, 1606550.
22) Wang, H.; Wang, L.; Wang, Q.; Ye, S.; Sun, W.; Shao, Y.;
x
–RGO hybrid
2
1
(
2
2
3
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
Jiang, Z.; Qiao, Q.; Zhu, Y.; Song, P.; Li, D.; He, L.; Zhang, X.;
Yuan, J.; Wu, T.; Ozin, G. A. Ambient electrosynthesis of
ammonia: electrode porosity and composition engineering.
Angew. Chem. Int. Ed. 2018, 57, 12360–12364.
2
CO fixation. J. Am. Chem. Soc. 2019, 141, 38–41.
(33) Meng, J.; Niu, C.; Xu, L.; Li, J.; Liu, X.; Wang, X.; Wu, Y.;
Xu, X.; Chen, W.; Li, Q.; Zhu, Z.; Zhao, D.; Mai, L. General
oriented formation of carbon nanotubes from metal–organic
frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.
(34) Li, X.-H.; Antonietti, M. Metal nanoparticles at
mesoporous N-doped carbons and carbon nitrides: functional
Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev.
2013, 42, 6593–6604.
(35) Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.;
Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónssonac, H.;
Nørskov, J. K. A theoretical evaluation of possible transition
2
metal electro-catalysts for N reduction. Phys. Chem. Chem.
Phys. 2012, 14, 1235–1245.
(36) Yao, Y.; Zhu, S.; Wang, H.; Li, H.; Shao, M. A
spectroscopic study on the nitrogen electrochemical
reduction reaction on gold and platinum surfaces. J. Am. Chem.
Soc. 2018, 140, 1496−1501.
(37) Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.;
Han, X.; Tsung, C.-K.; Ling, X. Y. Favoring the unfavored:
Selective electrochemical nitrogen fixation using a reticular
chemistry approach. Sci. Adv. 2018, 4, eaar3208.
(
23) Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site
gold catalysts on hierarchical N-doped porous noble carbon
for enhanced electrochemical reduction of nitrogen. Small
Methods 2018, 2, 1800202.
(
24) Wang, X.; Wang, W.; Qiao, M.; Wu, G.; Chen, W.; Yuan,
T.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X.; Wang, J.; Ge, J.;
Hong, X.; Li, Y.; Wu, Y.; Li, Y. Atomically dispersed Au catalyst
1
towards efficient electrochemical synthesis of ammonia. Sci.
Bull. 2018, 63, 1246–1253.
(25) Nazemi, M.; El-Sayed, M. A. Electrochemical synthesis of
ammonia from N
2
2
and H O under ambient conditions using
pore-size-controlled hollow gold nanocatalysts with tunable
plasmonic properties. J. Phys. Chem. Lett. 2018, 9, 5160−5166.
(
26) Xue, Z.-H.; Han, J.-T.; Feng, W.-J.; Yu, Q.-Y.; Li, X.-H.;
Antonietti, M.; Chen, J.-S. Tuning the adsorption energy of
methanol molecules along Ni-N-doped carbon phase
boundaries by the Mott–Schottky effect for gas-phase
methanol dehydrogenation. Angew. Chem. Int. Ed. 2018, 57,
2
697–2701.
27) Kim, D.; Xie, C.; Becknell, N.; Yu, Y.; Karamad, M.; Chan,
K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. Electrochemical
activation of CO through atomic ordering transformations of
AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.
28) Zhang, P.; Wang, L.; Yang, S.; Schott, J. A.; Liu, X.;
(
(38) Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu,
M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9
2
-1
-1
μgNH3 mg cat.
2
h for N electrochemical reduction over Ru
(
single-atom catalysts. Adv. Mater. 2018, 30, 1803498.
(39) Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X.
Ambient ammonia synthesis via palladium-catalyzed
electrohydrogenation of dinitrogen at low overpotential. Nat.
Commun. 2018, 9, 1795.
(40) Shi, M.-M.; Bao, D.; Li, S.-J.; Wulan, B.-R.; Yan, J.-M.; Jiang,
Q. Anchoring PdCu amorphous nanocluster on graphene for
electrochemical reduction of N to NH under ambient
2 3
conditions in aqueous solution. Adv. Energy Mater. 2018, 8,
1800124.
Mahurin, S. M.; Huang, C.; Zhang, Y.; Fulvio, P. F.; Chisholm,
M. F.; Dai, S. Solid-state synthesis of ordered mesoporous
carbon catalysts via a mechanochemical assembly through
coordination cross-linking. Nat. Commun. 2017, 8, 15020.
(
29) Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.;
Nielander, A. C.; Mcenaney, J. M.; Enemark-Rasmussen, K.;
Baker, J. G.; Singh, A. R.; Rohr, B. A.; Statt, M. J.; Blair, S. J.;
Mezzavilla, S.; Kibsgaard, J.; Vesborg, P. C. K.; Cargnello, M.;
Bent, S. F.; Jaramillo, T. F.; Stephens, I. E. L.; Nørskov, J. K.;
Chorkendorff, I.
A rigorous electrochemical ammonia
synthesis protocol with quantitative isotope measurements.
Nature 2019, 570, 504−508.
5
ACS Paragon Plus Environment