10.1002/anie.201712155
Angewandte Chemie International Edition
COMMUNICATION
observed (Figure 4a, 19F/29Si/13C-NMR spectra identical to [1-
F][S(NMe2)3] and a strong signal of [1-F-] in ESI-MS(-)). Due to
ligand scrambling between silicon and antimony, the isolation of
the intermediate species was not successful. However, and
similar to reactions with PF6- salts (see SI for details), the finally
identified
product
contained
the
tris(perchlorocatecholato)antimonate anion (see SI for X-ray
diffraction), likely driven by the release of SiF4 (for a proposed
reaction scheme and the identification of all observed
intermediates by 19F-NMR/ESI-MS, see SI). Clearly, the neutral
-
silicon Lewis acid 1 abstracts a fluoride ion from SbF6 , as the first
necessary elementary step in the observed reaction cascade,
serving as the experimental proof of its Lewis super acidity.[24]
Importantly, in agreement with our computational results, no
fluoride abstraction from [PPh4][SbF6] occurred with the weaker
Lewis acid Si(catF)2.
To demonstrate the utility of 1-(CH3CN)2 in catalysis, C(sp3)-F
bond activation for hydrodefluorination (HDF) was attempted –
processes well performed by silylium cations, but with no
precedence for neutral silicon species as a catalyst.[1c, 25] Indeed,
the HDF of 1-adamantylfluoride proceeded cleanly to full
conversion applying 10 mol% of 1-(CH3CN)2 in tetrachloroethane
in 15 h at rt, using Et3SiH or even deactivated PMHS as reducing
agent (Figure 4b). With a primary alkyl fluoride (1-pentylfluoride),
Figure 4: a) Fluoride abstraction from the SbF6- anion and following reactions,
b) hydrodefluorination with polymethlyhydrosiloxane (PMHS) catalyzed by 1-
(CH3CN)2, c) synthesis of donor free 1 with Oestreich’s SiH4 surrogate.
Keywords: Lewis super acids • silanes • hydrodefluorination •
main-group elements • catechol
[1]
a) A. Corma, H. García, Chem. Rev. 2003, 103, 4307-4366; b) S.
Antoniotti, V. Dalla, E. Duñach, Angew. Chem. Int. Ed. 2010, 49, 7860-
7888; c) T. Stahl, H. F. T. Klare, M. Oestreich, ACS Catalysis 2013, 3,
1578-1587; d) D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 10018-
10032; e) E. I. Davydova, T. N. Sevastianova, A. Y. Timoshkin, Coord.
Chem. Rev. 2015, 297, 91-126; f) M. Oestreich, J. Hermeke, J. Mohr,
Chem. Soc. Rev. 2015, 44, 2202-2220.
no catalytic HDF was obtained, but
a
stoichiometric
dehydrofluorination with subsequent isomerization of the terminal
to an internal olefin (2-pentene) occurred.
Despite the simple preparation of 1-(CH3CN)2 and its high
reactivity, access to donor-free 1 would be finally desirable.
Comparable synthetic procedures with HSiCl3 or SiCl4 in non-
donor solvents were not successful. However, a B(C6F5)3
catalyzed, dehydrogenative protocol relying on OESTREICH’s SiH4
surrogate tris(cyclohexadienyl)silane in CH2Cl2 granted access to
free 1, with H2 and benzene as the only byproducts (Figure 4c).[26]
The formation of 1 was proven by addition of OPEt3 or KF/18-
crown-6 to the insoluble product, affording identical NMR spectra
and single crystals as those obtained from the same reactions
with 1-(CH3CN)2.
[2]
[3]
a) L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G.
Santiso-Quiñones, V. Brecht, I. Krossing, Angew. Chem. Int. Ed. 2008,
47, 7659-7663; b) T. E. Mallouk, G. L. Rosenthal, G. Mueller, R.
Brusasco, N. Bartlett, Inorg. Chem. 1984, 23, 3167-3173; c) K. O. Christe,
D. A. Dixon, D. McLemore, W. W. Wilson, J. A. Sheehy, J. A. Boatz, J.
Fluorine Chem. 2000, 101, 151-153.
a) F. Sladky, H. Kropshofer, O. Leitzke, J. Chem. Soc., Chem. Commun.
1973, 134-135; b) V. C. Williams, W. E. Piers, W. Clegg, M. R. J.
Elsegood, S. Collins, T. B. Marder, J. Am. Chem. Soc. 1999, 121, 3244-
3245; c) M. Finze, E. Bernhardt, H. Willner, Angew. Chem. Int. Ed. 2007,
46, 9180-9196; d) L. A. Körte, J. Schwabedissen, M. Soffner, S.
Blomeyer, C. G. Reuter, Y. V. Vishnevskiy, B. Neumann, H.-G. Stammler,
N. W. Mitzel, Angew. Chem. Int. Ed. 2017, 56, 8578-8582.
In
conclusion,
we
identified
and
prepared
bis(perchlorocatecholato)silane as the first neutral silicon(IV)
Lewis super acid by a straightforward synthesis. Fluoride
-
abstraction from SbF6 experimentally verified the Lewis super
[4]
a) T. Belgardt, J. Storre, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt,
Inorg. Chem. 1995, 34, 3821-3822; b) J. Chen, E. Y. X. Chen, Angew.
Chem. Int. Ed. 2015, 54, 6842-6846; c) A. Wiesner, T. W. Gries, S.
Steinhauer, H. Beckers, S. Riedel, Angew. Chem. Int. Ed. 2017, 56,
8263-8266; d) J. F. Kögel, D. A. Sorokin, A. Khvorost, M. Scott, K. Harms,
D. Himmel, I. Krossing, J. Sundermeyer, Chem. Sci. 2018,
10.1039/C7SC03988C.
acidity. The characterization of a SiO4F2 silicate dianion and
stable chloridosilicates, as well as the catalytic activity in a
hydrodefluorination reaction exemplified the high affinity towards
halides. Given the Lewis acidity and the ease of preparation of 1-
(CH3CN)2, we are expecting versatile applications in bond
activation and other fields of research, where superior Lewis
acidity is needed.
[5]
[6]
D. Lentz, K. Seppelt, Z. Anorg. Allg. Chem. 1983, 502, 83-88.
C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science
2013, 341, 1374-1377.
[7]
a) S. Steinhauer, J. Bader, H.-G. Stammler, N. Ignat‘ev, B. Hoge, Angew.
Chem. Int. Ed. 2014, 53, 5206-5209; b) B. Waerder, M. Pieper, L. A.
Körte, T. A. Kinder, A. Mix, B. Neumann, H.-G. Stammler, N. W. Mitzel,
Angew. Chem. Int. Ed. 2015, 54, 13416-13419; c) N. Schwarze, B.
Kurscheid, S. Steinhauer, B. Neumann, H. G. Stammler, N. Ignat'ev, B.
Hoge, Chem. Eur. J. 2016, 22, 17460-17467.
Acknowledgements
We gratefully thank Prof. H.-J. Himmel for his support, the FCI for
financial support and the BWFor/BWUniCluster for computational
resources. D. Arian is acknowledged for ESI-MS measurements.
[8]
[9]
A. L. Liberman-Martin, R. G. Bergman, T. D. Tilley, J. Am. Chem. Soc.
2015, 137, 5328-5331.
D. H. McDaniel, H. C. Brown, J. Org. Chem. 1958, 23, 420-427.
This article is protected by copyright. All rights reserved.