10.1002/anie.201907353
Angewandte Chemie International Edition
COMMUNICATION
[4]
For selected examples on intramolecular spiroketalizations, see: a) B. M.
Trost, E. D. Edstrom, Angew. Chem. 1990, 102, 102, 541 - 542; Angew.
Chem. Int. Ed. 1990, 29, 520-522; b) S. K. Ghosh, R. P. Hsung, J. Liu, J.
Am. Chem. Soc. 2005, 127, 8260-8261; c) B. D. Sherry, L. Maus, B. N.
Laforteza, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 8132-8133; d) L.-
Z. Dai, M.-J. Qi, Y.-L. Shi, X.-G. Liu, M. Shi, Org. Lett. 2007, 9, 3191-
3194; e) H. H. Jung, J. R. Seiders, 2nd, P. E. Floreancig, Angew. Chem.
2007, 119, 8616-8619; Angew. Chem. Int. Ed. 2007, 46, 8464-8467; f) J.
M. Wurst, G. Liu, D. S. Tan, J. Am. Chem. Soc. 2011, 133, 7916-7925.
g) A. N. Butkevich, A. Corbu, L. Meerpoel, I. Stansfield, P. Angibaud, P.
Bonnet, J. Cossy, Org. Lett. 2012, 14, 4998-5001.
give 10a. The total synthesis of (+)-broussonetine G was
completed by the final hydrogenation of 10a in a linear sequence
of 6 steps from 3-butenal with 10.1% overall yield. Meanwhile,
with (-)-4m, the diastereomer of (+)-broussonetine G was also
prepared in the same way, [14] which provided a useful method in
view of the demanding of structural diversity for the study of
structure-activity relationship (SAR). Similarly, 4x was converted
into 8x, which could be transformed to (+)-broussonetine H in two
steps by a known procedure. [2e]
In summary, the first stereoselective multi-components
tandem cyclizations of exocyclic enol ethers/enamines,
methylene malonate and aldehydes were developed catalyzed by
[5]
For
selected
examples
on
enantioselective
intramolecular
spiroketalizations, see: a) I. Coric, B. List, Nature 2012, 483, 315-319; b)
Z. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc.
2012, 134, 8074-8077; c) X. Wang, Z. Han, Z. Wang, K. Ding, Angew.
Chem. 2012, 124, 960-964; Angew. Chem. Int. Ed. 2012, 51, 936-940;
d) N. Yoneda, Y. Fukata, K. Asano, S. Matsubara, Angew. Chem. 2015,
127, 15717-15720; Angew. Chem. Int. Ed. 2015, 54, 15497-15500; e) J.
Y. Hamilton, S. L. Rossler, E. M. Carreira, J. Am. Chem. Soc. 2017, 139,
8082-8085.
a
copper (II) catalyst to furnish the spiroheterocyclic
tetrahydropyrans in up to 99% yields with >95/5 dr. The reaction
has a broad substrate scope that includes 36 examples. A very
wide range of aldehydes, as well as different exo-vinyl
heterocycles can all work well. This newly developed method was
competent in modifying complex molecules at late stage, and was
applied to the total synthesis of (+)-broussonetine G and formal
synthesis of (+)-broussonetine H. The spiroketal was transformed
to (+)-broussonetine G in a linear sequence of 6 steps from 3-
butenal with 10.1% overall yield. Further application of this
reaction is still underway in our laboratory.
[6]
a) P. Pale, J. Chuche, Tetrahedron Lett. 1988, 29, 2947-2950; b) G. Zhou,
J. Zhu, Z. Xie, Y. Li, Org. Lett. 2008, 10, 721-724; c) M. A. Marsini, Y.
Huang, C. C. Lindsey, K.-L. Wu, T. R. R. Pettus, Org. Lett. 2008, 10,
1477-1480.
[7]
[8]
M. A. Rizzacasa, A. Pollex, Org. Biomol. Chem. 2009, 7, 1053-1059.
a) J. Barluenga, A. Mendoza, F. Rodriguez, F. J. Fananas, Angew. Chem.
2009, 121, 1672-1675; Angew. Chem. Int. Ed. 2009, 48, 1644-1647; b)
X. Wang, S. Dong, Z. Yao, L. Feng, P. Daka, H. Wang, Z. Xu, Org. Lett.
2014, 16, 22-25; c) M. Liang, S. Zhang, J. Jia, C.-H. Tung, J. Wang, Z.
Xu, Org. Lett. 2017, 19, 2526-2529.
Acknowledgements
[9]
For asymmetric version of intermolecular spiroketalizations, see: a) H.
Wu, Y.-P. He, L.-Z. Gong, Org. Lett. 2013, 15, 460-463; b) J. Li, L. Lin,
B. Hu, X. Lian, G. Wang, X. Liu, X. Feng, Angew. Chem. 2016, 128,
6179-6182; Angew. Chem. Int. Ed. 2016, 55, 6075-6078; c) J. Gong, Q.
Wan, Q. Kang, Adv. Syn. Catal. 2018, 360, 4031-4036; d) S. Ge, W. Cao,
T. Kang, B. Hu, H. Zhang, Z. Su, X. Liu, X. Feng, Angew. Chem. 2019,
131, 4057-4061; Angew. Chem. Int. Ed. 2019, 58, 4017-4021.
We thank the NSFC (Nos. 21432011, 21772224), the CAS (Nos.
QYZDY-SSW-SLH016, XDB20000000, 2017301), and the
STCSM (Nos. 17JC1401200, 17ZR1436900) for the financial.
Keywords: spiroketal • diastereoselectivity • copper catalyst •
tandem cyclization • (+)-broussonetine G
[10] F. E. McDonald, H. Y. H. Zhu, C. R. Holmquist, J. Am. Chem. Soc. 1995,
117, 6605-6606.
[11] a) C. C. Lindsey, K. L. Wu, T. R. R. Pettus, Org. Lett. 2006, 8, 2365-
2367; b) K.-L. Wu, S. Wilkinson, N. O. Reich, T. R. R. Pettus, Org. Lett.
2007, 9, 5537-5540; c) K.-L. Wu, E. V. Mercado, T. R. R. Pettus, J. Am.
Chem. Soc. 2011, 133, 6114-6117.
[1]
a) F. Perron, K. F. Albizati, Chem. Rev. 1989, 89, 1617-1661; b) J. A.
Beavo, L. L. Brunton, Nat. Rev. Mol. Cell Biol. 2002, 3, 710; c) J. E. Aho,
P. M. Pihko, T. K. Rissa, Chem. Rev. 2005, 105, 4406-4440; d) J. A.
Palmes, A. Aponick, Synthesis 2012, 44, 3699-3721; e) M. Wilsdorf, H.-
U. Reissig, Angew. Chem. 2012, 124, 9624-9626; Angew. Chem. Int. Ed.
2012, 51, 9486-9488; f) F. M. Zhang, S. Y. Zhang, Y. Q. Tu, Nat. Prod.
Rep. 2018, 35, 75-104.
[12] a) F. Bohlmann, C. Zdero, Phytochemistry 1977, 16, 1092-1095; b) A. A.
Mahmoud, A. A. Ahmed, M. Iinuma, T. Tanaka, Phytochemistry 1998, 48,
543-546.
[13] a) J. L. Hu, L. W. Feng, L. Wang, Z. Xie, Y. Tang, X. Li, J. Am. Chem.
Soc. 2016, 138, 13151-13154; b) J. Zhu, Y. J. Cheng, X. K. Kuang, L.
Wang, Z. B. Zheng, Y. Tang, Angew. Chem. 2016, 128, 9370-9374;
Angew. Chem. Int. Ed. 2016, 55, 9224-9228; c) H. Chen, L. Wang, F.
Wang, L. P. Zhao, P. Wang, Y. Tang, Angew. Chem. 2017, 129, 7046-
7049; Angew. Chem. Int. Ed. 2017, 56, 6942-6945; d) X.-K. Kuang, J.
Zhu, L. Zhou, L. Wang, S. R. Wang, Y. Tang, ACS Catal. 2018, 8, 4991-
4995.
[2]
a) B. M. Trost, D. B. Horne, M. J. Woltering, Angew. Chem. 2003, 115,
6169-6172; Angew. Chem. Int. Ed. 2003, 42, 5987-5990; b) B. M. Trost,
D. B. Horne, M. J. Woltering, Chem. Eur. J. 2006, 12, 6607-6620; c) M.
Wilsdorf, H.-U. Reissig, Angew. Chem. 2012, 126, 4420-4424; Angew.
Chem. Int. Ed. 2014, 53, 4332-4336; d) H. Cheng, Z. Zhang, H. Yao, W.
Zhang, J. Yu, R. Tong, Angew. Chem. 2017, 129, 9224-9228; Angew.
Chem. Int. Ed. 2017, 56, 9096-9100; e) S. L. Rössler, B. S. Schreib, M.
Ginterseder, J. Y. Hamilton, E. M. Carreira, Org. Lett. 2017, 19, 5533-
5536.
[14] For details, see supporting information.
[15] CCDC 1921542 (4a), 1921543 (4u), 1921546 (5c) and 1921531 ((+)-
sclareolide-spiro) contain the supplementary crystallographic data, which
can be obtained free of charge from The Cambridge Crystallographic
Data Centre.
[3]
a) M. Shibano, S. Nakamura, N. Akazawa, G. Kusano, Chem. Pharm.
Bull. 1998, 46, 1048-1050; b) J. Li, L. Li, Y. Si, X. Jiang, L. Guo, Y. Che,
Org. Lett. 2011, 13, 2670-2673; c) Q.-Y. Liu, T. Zhou, Y.-Y. Zhao, L. Chen,
M.-W. Gong, Q.-W. Xia, M.-G. Ying, Q.-H. Zheng, Q.-Q. Zhang, Marine
Drugs 2015, 13, 4733-4753.
[16] a) N. Hama, T. Aoki, S. Miwa, M. Yamazaki, T. Sato, N. Chida, Org. Lett.
2011, 13, 616-619; b) Y.-X. Li, Y. Shimada, K. Sato, A. Kato, W. Zhang,
Y.-M. Jia, G. W. J. Fleet, M. Xiao, C.-Y. Yu, Org. Lett. 2015, 17, 716-719.
This article is protected by copyright. All rights reserved.