unprecedented. Olefins are quite challenging substrates
to functionalize in CÀH bond activation reactions due to
their lability and increased reactivity relative to arenes.15,16
This challenge is predominant in the case of CÀH bond
halogenation of olefins using N-halosuccinimides, as com-
peting radical or cationic background reactions will have
to be circumvented in order to provide a chemo- and
regioselective outcome (Figure 1). Using the rather mild
Rh(III)-catalyzed halogenation methodologydeveloped in
our group,14 we anticipated that these challenges could be
met to provide a stereoselective synthesis of the Z-haloacrylic
acid motif.
Figure 1. Effect of the Rh(III)-catalyst on the direct halogena-
tion of acrylic acids.
Herein, we describe the first transition-metal catalyzed
iodination and bromination of vinylic CÀH bonds which
provides a simple and selective access to a variety of
Z-haloacrylic acid derivatives starting directly from the
alkene-oxidation state. Additionally, a broad overview on
the functional group tolerance and the application to
different amide directing groups are presented to facilitate
potential applications of the methodology described.
We began our study on vinylic CÀH bond halogena-
tions with the iodination of methacrylamide 2. When
applying similar reaction conditions as used for the halo-
genation of arenes14 (Scheme 1), 2 was smoothly converted
to the desired iodinated product 2-I in 76% yield as
determined by GC analysis. Control experiments demon-
strated that a cationic RhCp*-species and the pivalic acid
are essential to obtain satisfying conversion to 2-I. Nota-
bly, no conversion of the starting material was detected
when the reaction was conducted without [RhCp*Cl2]2
and AgSbF6, whereas if only the Rh(III)-catalyst was
omitted significant side reactions were observed, high-
lighting the efficiency of the Rh(III)-catalyzed pathway.17
With the optimized conditions in hand, we continued to
study the influence of different substituents on the effi-
ciency of the iodination and the corresponding bromina-
tion reaction (Scheme 1). In the case of the unsubstituted
vinylamide 1 the iodination reaction led to the desired
product 1-I. The bromination was dominated by a back-
ground reaction yielding a dibrominated amide as the
major product.17
often limited with regard to the accessible substitution
patterns.8 Consequently, the application of CÀH bond
activation in the direct halogenation of electron-deficient
olefins is desirable, as it would provide a more general
route to these halogenated motifs due to the ready avail-
ability of diversely substituted acrylic acid derivatives.
In the past decade, a variety of methods for the palladium-
catalyzed ortho-directed halogenation of aromatic sp2
CÀH bonds have been developed by Sanford,9 Yu,10
Shi,11 and others12 which allow the functionaliza-
tion of benzoic acid, aniline, or phenol derivatives. In
addition, our group recently demonstrated that also a
Rh(III)-catalystis competent for the ortho-halogenation of
different benzene derivatives.13,14 However, it seems that
the direct halogenation of vinylic CÀH bonds is still
(7) Examples on MoritaÀBaylisÀHilman-type reactions: (a) Senapati,
B. K.; Hwang, G.-S.; Lee, S.; Ryu, D. H. Angew. Chem., Int. Ed. 2009,
48, 4398. (b) Lee, S. I.; Hwang, G.-S.; Ryu, D. H. Synlett 2007, 1, 59. (c)
ꢀ
Wei, H.-X.; Hu, J.; Purkiss, D. W.; Pare, P. W. Tetrahedron Lett. 2003,
44, 949. (d) Taniguchi, M.; Hino, T.; Kishi, Y. Tetrahedron Lett. 1986,
27, 4767.
(8) For an aminohalogenation of R,β-unsaturated carbonyl com-
pounds, see: Sun, H.; Zhang, G.; Zhi, S.; Han, J.; Li, G.; Pan, Y. Org.
Biomol. Chem. 2010, 8, 4236.
(9) (a) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org.
Lett. 2006, 8, 2523. (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am.
Chem. Soc. 2004, 126, 2300.
(10) (a) Mei, T. S.; Wang, D.-H.; Yu, J.-Q. Org. Lett. 2010, 12, 3140.
(b) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed.
2008, 47, 5215. (c) Giri, R.; Chen, X.; Yu, Y.-Q. Angew. Chem., Int. Ed.
2005, 44, 2112.
(11) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.
J. Am. Chem. Soc. 2006, 128, 7416.
In contrast, R-substituted vinylamides 2 and 3 were
successfully halogenated under these reaction con-
ditions in excellent yields. Nevertheless, conducting the
halogenations of vinylamide 3 in the absence of the
Rh(III)-catalyst gave the same yields and selectivities
for the Z-halogenated products.18 Interestingly, for the
β-substituted vinylamides 4 and 5, halogenation with NIS
(12) Selected examples on the halogenation of arenes via CÀH-bond
activation: (a) Sun, X.; Shan, G.; Sun, Y.; Rao, Y. Angew. Chem., Int.
Ed. 2013, 52, 4440. (b) Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.;
Webster, R. L. Angew. Chem., Int. Ed. 2011, 50, 5524. (c) Zhao, X.;
ꢀ
Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466. (d)
Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato,
M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310.
(13) Recent reviews on Rh(III)-catalyzed CÀH bond activation: (a)
Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (b) Patureau,
F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31. (c)
Satoh, T.; Miura, T. Chem.;Eur. J. 2010, 16, 11212.
(16) Selected articles on Rh(III)-catalyzed vinylic CÀH bond activa-
tion: (a) Lian, Y.; Huber, T.; Hesp, K. D.; Bergman, R. G.; Ellman, J. A.
Angew. Chem., Int. Ed. 2013, 52, 629. (b) Neely, J. M.; Rovis, T. J. Am.
Chem. Soc. 2013, 135, 66. (c) Zhang, J.; Loh, T.-P. Chem. Commun. 2012,
48, 11232. (d) Wencel-Delord, J.; Nimphius, C.; Patureau, F. W.;
Glorius, F. Chem.;Asian J. 2012, 7, 1208. (e) Besset, T.; Kuhl, N.;
Patureau, F. W.; Glorius, F. Chem.;Eur. J. 2011, 17, 7167. (f) Hyster,
T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606. (g) Mochida, S.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024. (h) Morimoto, K.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 9548. (i) Su, Y.;
Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12, 5462. (j)
Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
6295.
€
(14) Schroder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc.
2012, 134, 8298.
(15) Selected examples for transition-metal catalyzed vinylic CÀH
bond activation: (a) Wang, L.; Ackermann, L. Org. Lett. 2013, 15, 176.
(b) Duttwyler, S.; Chen, S.; Takase, M. K.; Wiberg, K. B.; Bergman,
R. G.; Ellman, J. A. Science 2013, 339, 678. (c) Yu, H.; Jin, W.; Sun, C.;
Chen, J.; Du, W.; He, S.; Yu, Z. Angew. Chem., Int. Ed. 2009, 49, 5792.
(d) Xu, Y.-H.; Lu, J.; Loh, T.-P. J. Am. Chem. Soc. 2009, 131, 1372. (e)
Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082. (f) Hatamoto, Y.;
Sakaguchi, S.; Ishii, Y. Org. Lett. 2004, 6, 4623. (g) Sato, T.; Kakiuchi,
F.; Chatani, N.; Murai, S. Chem. Lett. 1998, 893. For a recent review on
this topic, see: (h) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253.
(17) For further details see SI.
B
Org. Lett., Vol. XX, No. XX, XXXX