Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
¨
1 (a) F. Rohrscheid, Ullmann’s Encyclopedia of Industrial Chemistry,
2000; (b) Carboxylic Acids and Esters, ed. S. Patai, John Wiley & Sons,
Ltd., Chichester, UK, 1969.
Scheme 3 Silyloxycarbonylation of vinyl bromides.
2 PET, PEN, MOFs (a) E. Gubbels, T. Heitz, M. Yamamoto, V. Chilekar,
¨
S. Zarbakhsh, M. Gepraegs, H. Kopnick, M. Schmidt, W. Bru¨gging,
J. Ru¨ter and W. Kaminsky, Ullmann’s Encyclopedia of Industrial
Chemistry, Wiley, 2018; (b) S. L. Sakellarides, Encyclopedia Of Polymer
Science and Technology, Wiley, 2004; (c) T. M. Tovar, J. Zhao, W. T.
Nunn, H. F. Barton, G. W. Peterson, G. N. Parsons and M. D. LeVan,
J. Am. Chem. Soc., 2016, 138, 11449.
3 For recent reviews: (a) S.-S. Yan, Q. Fu, L.-L. Liao, G.-Q. Sun, J.-H. Ye,
L. Gong, Y.-Z. Bo-Xue and D.-G. Yu, Coordin. Chem. Rev., 2018,
374, 439; (b) Chemical Transformations of Carbon Dioxide, ed.
X.-F. Wu and M. Beller, Springer International Publishing,
2018; (c) M. Aresta, A. Dibenedetto and E. Quaranta, J. Catal.,
¨
2016, 343, 2; (d) M. Borjesson, T. Moragas, D. Gallego and
Scheme 4 Proposed mechanism of silyloxycarbonylation.
R. Martin, ACS Catal., 2016, 6, 6739.
4 For recent reports, see: (a) J. Song, Q. Liu, H. Liu and X. Jiang, Eur.
J. Org. Chem., 2018, 696; (b) C. S. Yeung and V. M. Dong, Top. Catal.,
2014, 57, 1342; (c) J. Hou, J.-S. Li and J. Wu, Asian J. Org. Chem., 2018,
7, 1439; (d) F. Tan and G. Yin, Chin. J. Chem., 2018, 36, 545;
(e) Y. Cao, X. He, N. Wang, H.-R. Li and L.-N. He, Chin. J. Chem.,
carbonylation. After releasing CO, silanol R3SiOH was left and it
was supposed to participate in the reaction to form the silyl
ester. To check the silyl ester, the reaction mixture before
hydrolyzing was analyzed by NMR (Fig. S1–S5, ESI†). The results
of 1H NMR showed the presence of (EtO)3SiOSi(EtO)2OH and a
little up field shift for Ar-protons of 2a (Fig. S1 and S2, ESI†).
In 13C NMR spectra (Fig. S3 and S4, ESI†), chemical shifts at
d 165.0 and d 171.3 ppm were ascribed to 2a0 (ArCO2Si(OEt)3)
and 2a respectively. Also, 29Si NMR showed two peaks at d
ꢁ85.3 and ꢁ85.5 ppm attributed to (EtO)3SiOSi(EtO)2OH. The
third peak at d ꢁ92.5 ppm implied the signal for 2a0 (Fig. S5,
ESI†). Based on these results, we proposed the mechanism
shown in Scheme 4. The formation of free acid could be
possible by dimerization of silanol while hydrolysing the silyl
ester. Usual water work-up hydrolyses the silyl ester and liberates
the carboxylic acid.
´
´
2018, 36, 644; ( f ) F. Julia-Hernandez, M. Gaydou, E. Serrano, M. van
Gemmeren and R. Martin, Top. Curr. Chem., 2016, 374, 45;
(g) I. Tommasi, Catalysts, 2017, 7, 380; (h) S. Wang, G. Du and
C. Xi, Org. Biomol. Chem., 2016, 14, 3666.
5 (a) M. Jensen, M. Rønne, A. Ravn, R. Juhl, D. Nielsen, X.-M. Hu,
S. Pedersen, K. Daasbjerg and T. Skrydstrup, Nat. Commun., 2017,
8, 489; (b) M. Ali, A. Gual, G. Ebeling and J. Dupont, ChemCatChem,
2014, 6, 2224; (c) X. Ren, Z. Zheng, L. Zhang, Z. Wang, C. Xia and
K. Ding, Angew. Chem., Int. Ed., 2017, 56, 310; (d) D.-G. Yu, Z. Zhang,
T. Ju and J.-H. Ye, Synlett, 2017, 741.
6 T. G. Ostapowicz, M. Schmitz, M. Krystof, J. Klankermayer and
W. Leitner, Angew. Chem., Int. Ed., 2013, 52, 12119.
7 L. Wu, Q. Liu, I. Fleischer, R. Jackstell and M. Beller, Nat. Commun.,
2014, 5, 3091.
8 (a) J. Pesti and G. L. Larson, Org. Process Res. Dev., 2016, 20, 1164;
(b) J. M. Lavis, R. E. Maleczka, V. Chandrasekaran and S. J. Collier,
Encycl. Reagents Org. Synth., 2016; (c) D. P. Xu, W. J. Xiao, J. J. Peng,
J. Y. Li and Y. Bai, Chin. J. Org. Chem., 2014, 34, 2195.
In conclusion, we have developed an efficient silyloxycarbonyla-
tion strategy to make carboxylic acids from CO2 utilizing PMHS as a
source of both non-metallic reductant and nucleophilic coupling
partner. The strategy works in one-pot tandem Cu(II)-catalysed
reduction–Pd(II)-mediated silyloxycarbonylation reaction involving
silyl formate as a CO-surrogate. The method is applicable to
produce mono-, di-, and tricarboxylic acids from iodo/bromo/
chloro aryls and vinyl bromides, in good to excellent yields. This
work provides a novel strategy of utilizing CO2 as a CO-surrogate
to get carboxylic acids. Further application of this strategy to other
carbonylative reactions is underway.
9 CO2 reduction by Si–H: (a) K. Motokura, D. Kashiwame, N. Takahashi,
A. Miyaji and T. Baba, Chem. – Eur. J., 2013, 19, 10030; (b) K. Motokura,
M. Naijo, S. Yamaguchi, A. Miyaji and T. Baba, Chem. Lett., 2015,
44, 1464; (c) D. S. Morris, C. Weetman, J. T. C. Wennmacher, M. Cokoja,
M. Drees, F. E. Ku¨hn and J. B. Love, Catal. Sci. Technol., 2017, 7, 2838;
(d) M. Rauch and G. Parkin, J. Am. Chem. Soc., 2017, 139, 18162;
(e) J. Chen, L. Falivene, L. Caporaso, L. Cavallo and E. Y. X. Chen,
J. Am. Chem. Soc., 2016, 138, 5321; ( f ) D. Mukherjee, D. F. Sauer,
A. Zanardi and J. Okuda, Chem. – Eur. J., 2016, 22, 7730.
10 (a) X. Ren, Z. Zheng, L. Zhang, Z. Wang, C. Xia and K. Ding, Angew.
Chem., Int. Ed., 2017, 56, 310; (b) B. Yu, Z. Yang, Y. Zhao, L. Hao,
H. Zhang, X. Gao, B. Han and Z. Liu, Chem. – Eur. J., 2016, 22, 1097.
11 Selected reviews: (a) H. Konishi and K. Manabe, Synlett, 2014, 1971;
(b) H. Konishi, Chem. Pharm. Bull., 2018, 66, 1.
12 In a separate experiment formic acid was used as a CO surrogate
and the carboxylation reaction was checked (see Table S6, ESI†).
13 Enhanced CO production was found compared to simple thermal
decomposition.
We thank the National Key R&D Program of China
(2017YFB0702800) and the National Natural Science Founda-
tion of China (21621063).
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018