ACS Catalysis
Letter
In summary, a triple mutant K66Q/S149G/N262C
TM_pheDH) was successfully engineered by directed
(8) Sehl, T.; Hailes, H. C.; Ward, J. M.; Wardenga, R.; von Lieres, E.;
Offermann, H.; Westphal, R.; Pohl, M.; Rother, D. Angew. Chem., Int.
Ed. 2013, 52, 6772−6775.
(
evolution of Rhodococcus pheDH via simultaneous random-
ization of two amino acid residues K66 and N262, followed by
single site saturation mutagenesis at other 20 selected residues,
as a new amine dehydrogenase for the highly enantioselective
reductive amination of phenylacetone 1 and 4-phenyl-2-
butanone 3 to give (R)-amphetamine 2 and (R)-1-methyl-3-
phenylpropylamine 4 in >98% ee, respectively. TM_pheDH
(
9) Kohls, H.; Steffen- Munsberg, F.; Hoehne, M. Curr. Opin Chem.
Biol. 2014, 19, 180−192.
10) Abrahamson, M. J.; Vazquez-Figueroa, E.; Woodall, N. B.;
Moore, J. C.; Bommarius, A. S. Angew. Chem., Int. Ed. 2012, 51, 3969−
972.
11) Abrahamson, M. J.; Wong, J. W.; Bommarius, A. S. Adv. Synth.
(
3
(
Catal. 2013, 355, 1780−1786.
−
1
showed a k of 0.70 and 0.72 s and k /K of 0.18 and 0.50
(12) Au, S. K.; Bommarius, B. R.; Bommarius, A. S. ACS catal. 2014,
4, 4021−4026.
cat
cat
m
−
1
−1
s
mM for the conversion of 1 to (R)-2 and of 3 to (R)-4,
(13) Bommarius, B. R.; Schurmann, M.; Bommarius, A. S. Chem.
respectively. Coupling of TM_pheDH and glucose dehydro-
Commun. 2014, 50, 14953−14955.
genase allowed 95% conversion of 15 mM 3 to (R)-4 with
+
(14) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.;
Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411−420.
NAD recycling. Molecular docking provided with some insight
into the role of key mutations, which could be very useful for
further engineering amine dehydrogenase with higher activity
and/or different substrate specificity. The engineered TM-
pheDH with different substrate specificity is an important
addition to the family of amine dehydrogenases with a very
limited number thus far, contributing to the expending of
synthetic scope of amine dehydrogenases-catalyzed asymmetric
reductive amination of ketone in green and sustainable
pharmaceutical manufacturing.
(15) Itoh, N.; Yachi, C.; Kukome, T. J. Mol. Catal. B: Enzym. 2000,
1
(
0, 281−290.
16) Turner, N. J. Nat. Chem. Biol. 2009, 5, 567−573.
(17) Auchli, R.; Rabe, K. S.; Kalbarczyk, K. Z.; Tata, A.; Heel, T.;
Kitto, R. Z.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 5571−5574.
(18) Reetz, M. T. J. Am. Chem. Soc. 2013, 135, 12480−12496.
(19) Hummel, W.; Schutte, H.; Schmidt, E.; Wandrey, C.; Kula, M.
R. Appl. Microbiol. Biotechnol. 1987, 26, 409−416.
(20) Murase, K.; Mase, T.; Ida, H.; Takahashi, K.; Murakami, M.
Chem. Pharm. Bull. 1978, 26, 1123−1129.
(21) Abrams, P.; Speakman, M.; Stott, M.; Arkell, D.; Pocock, R. Br.
J. Urol. 1997, 80, 587−596.
ASSOCIATED CONTENT
■
*
S
Supporting Information
(
22) Clifton, J. E.; Collins, I.; Hallett, P.; Hartley, D.; Lunts, L. H. C.;
Wicks, P. D. J. Med. Chem. 1982, 25, 670−679.
23) Vanhooke, J. L.; Thoden, J. B.; Brunhuber, N. M. W.; Blanchard,
(
Chemicals, strains and biochemicals, analytic method;
procedures for directed evolution, cell growth, enzyme
purification, biotransformation, enzyme simulation and
modeling, kinetics; HPLC chromatograms (PDF)
J. S.; Holden, H. M. Biochemistry 1999, 38, 2326−2339.
(24) Brunhuber, N. M. W.; Thoden, J. B.; Blanchard, J. S.; Vanhooke,
J. L. Biochemistry 2000, 39, 9174−9187.
(25) Yamada, A.; Dairi, T.; Ohno, Y.; Huang, X. L.; Asano, Y. Biosci.
Biotechnol. Biochem. 1995, 59, 1994−1995.
(26) Reetz, M. T.; Kahakeaw, D.; Lohmer, R. ChemBioChem. 2008, 9,
AUTHOR INFORMATION
■
*
6
1797−1804.
779 1936.
(27) Reetz, M. T. Angew. Chem., Int. Ed. 2013, 52, 2658−2666.
(
28) Yang, Y.; Liu, J.; Li, Z. Angew. Chem., Int. Ed. 2014, 53, 3120−
3
124.
(29) Pham, S. Q.; Pompidor, G.; Liu, J.; Li, X. D.; Li, Z. Chem.
Notes
Commun. 2012, 48, 4618−4620.
(30) Kille, S.; Zilly, F. E.; Acevedo, J. P.; Reetz, M. Nat. Chem. 2011,
The authors declare no competing financial interest.
3
, 738−743.
31) Zhang, Z. G.; Lonsdale, R.; Sanchis, J.; Reetz, M. T. J. Am. Chem.
Soc. 2014, 136, 17262−17272.
32) Zhang, W.; O’Connor, K.; Wang, D. I. C.; Li, Z. Appl. Environ.
(
ACKNOWLEDGMENTS
■
(
This work was financially supported by GlaxoSmithKline
GSK) and Singapore Economic Development Board (EDB)
through a Green and Sustainable Manufacturing Grant (Project
No. 279-000-348-592).
(
Microbiol. 2009, 75, 687−694.
(33) Pham, S. Q.; Gao, P.; Li, Z. Biotechnol. Bioeng. 2013, 110, 363−
373.
REFERENCES
■
(
(
1) Ho
̈
hne, M.; Bornscheuer, U. T. ChemCatChem 2009, 1, 42−51.
2) Messina, F.; Botta, M.; Corelli, F.; Schneider, M. P.; Fazio, F. J.
Org. Chem. 1999, 64, 3767−3769.
3) Paetzold, J.; Backvall, J. E. J. Am. Chem. Soc. 2005, 127, 17620−
7621.
4) Li, T.; Liang, J.; Ambrogelly, A.; Brennan, T.; Gloor, G.;
(
1
(
Huisman, G.; Lalonde, J.; Lekhal, A.; Mijts, B.; Muley, S.; Newman, L.;
Tobin, M.; Wong, G.; Zaks, A.; Zhang, X. J. Am. Chem. Soc. 2012, 134,
6
(
(
467−6472.
5) Ghislieri, D.; Turner, N. J. Top Catal. 2013, 57, 284−300.
6) Leipold, F.; Hussain, S.; Ghislieri, D.; Turner, N. J.
ChemCatChem 2013, 5, 3505−3508.
7) Rodríguez-Mata, M.; Frank, A.; Wells, E.; Leipold, F.; Turner, N.
J.; Hart, S.; Turkenburg, J. P.; Grogan, G. ChemBioChem 2013, 14,
372−1379.
(
1
1
122
ACS Catal. 2015, 5, 1119−1122