J. Bayardon et al. / Tetrahedron: Asymmetry 15 (2004) 3195–3200
3199
is no influence of the stereogenic center at C-5 on the
enantioselectivity of the reaction.
then stirred at rt for seven days. The solvent was then
removed under reduced pressure, and the residue puri-
fied by column chromatography on silica gel (eluent:
petroleum ether/ethyl acetate 10:1) to give the corre-
sponding allylic benzoate. The ee was determined by
HPLC using a Chiralpak AD (25cm · 0.46cm) and elut-
ing with hexane/i-PrOH (150:1).
The same ligands gave enantioselectivities up to 84% in
the copper-catalyzed allylic oxidation of various cyclo-
alkenes, with again practically no influence of the stereo-
genic center at C-5 on the selectivity. The corresponding
4,5-diphenyl substituted pyridine-bis(oxazolines) gave
lower ees in this reaction, the higher enantioselectivity
being observed with the cis-stereoisomer. The configura-
tion of the newly created center can be rationalized
using the appropriate transition states.
Acknowledgements
J.B. thanks the MENRT for a fellowship.
4. Experimental
4.1. General
References
1. Pfaltz, A. Acc. Chem. Res. 1993, 26, 339–345.
2. Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron:
Asymmetry 1998, 9, 1–45.
3. Jorgensen, K. A.; Johannsen, M.; Yao, S.; Audrain, H.;
Thorhauge, J. Acc. Chem. Res. 1999, 32, 605–613.
4. Evans, D. A.; Rovis, T.; Johnson, J. S. Pure Appl. Chem.
1999, 71, 1407–1415.
5. Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33,
325–335.
6. Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev. 2003,
103, 3119–3154.
Solvents were purified by standard methods and dried if
necessary. All commercially available reagents were used
as received. Ligands 1,37 2,37 3,24 and 438 have already
been prepared. Reactions involving organometallic
catalysis were carried out in a Schlenk tube under an
inert atmosphere. All reactions were monitored by
TLC (TLC plates GF254 Merck); detection was effected
by UV absorbance. Column chromatography was per-
formed on silica gel 60 (230–240mesh, Merck). NMR
spectra were recorded with a Bruker AMX 300
spectrometer. Enantiomeric excesses were determined
by HPLC with a Chiralpak AD column (25cm ·
4.6cm) using different ratios of hexane/i-propanol as
the eluent.
7. Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129–
3170.
8. Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa,
A.; Teply, F.; Meghani, P.; Kocovsky, P. J. Org. Chem.
2003, 68, 4727–4742, and references cited therein.
9. Johannsen, M.; Jørgensen, K. A. J. Org. Chem. 1995, 60,
5757–5762.
10. Evans, D. A.; Johnson, J. S.; Burgey, C. S.; Campos, K. R.
Tetrahedron Lett. 1999, 40, 2879–2882.
11. Knoch, R.; Wilk, A.; Wannowius, K. J.; Reinen, D.; Elias,
H. Inorg. Chem. 1990, 29, 3799–3805.
12. Thorhauge, J.; Roberson, M.; Hazell, R. G.; Jørgensen,
K. A. Chem. Eur. J. 2002, 8, 1888–1898.
4.2. Procedure for the catalytic allylic alkylation
Ligand (50lmol, 5mol%) and [(g3-C3H5)PdCl]2
(7.3mg, 20 lmol, 2%) were dissolved in CH2Cl2 (8mL)
under nitrogen in a Schlenk tube. The reaction mixture
was stirred for 1h, and rac-1,3-(E)-diphenyl-2-propenyl
acetate 5 (252mg, 1mmol) in CH2Cl2 (3mL) then trans-
ferred into another reaction vessel containing N,O-
bis(trimethylsilyl)acetamide (610mg, 3mmol), KOAc
(9.8mg, 0.1mmol, 10mol%), and the nucleophile
(3mmol) in CH2Cl2 (6mL). The reaction mixture was
stirred at the desired temperature for the appropriate
time. Diethyl ether (20mL) was added, and the solution
washed with a saturated aqueous solution of NH4Cl
(2 · 10mL). The solvent was evaporated, and the resi-
due purified by chromatography on silica gel (eluent:
petroleum ether/ethyl acetate 5:1) to afford alkylated
product 6. The enantioselectivity was determined by
HPLC with a Chiralpak AD (25cm · 0.46cm) and elut-
ing with hexane/i-PrOH (8:2).
`
13. Pericas, M. A.; Puigjaner, C.; Riera, A.; Vidal-Ferran, A.;
Gomez, M.; Jimenez, F.; Muller, G.; Rocamora, M.
´
Chem. Eur. J. 2002, 8, 4164–4178.
14. Desimoni, G.; Faita, G.; Invernizzi, A. G.; Righetti, P.
Tetrahedron 1997, 53, 7671–7688.
15. Desimoni, G.; Faita, G.; Righetti, P.; Sardone, N.
Tetrahedron 1996, 52, 12019–12030.
16. Carbone, P.; Desimoni, G.; Faita, G.; Filippone, S.;
Righetti, P. Tetrahedron 1998, 54, 6099–6110.
17. Desimoni, G.; Faita, G.; Guala, M.; Pratelli, C. Tetrahe-
dron 2002, 58, 2929–2935.
18. Yao, S.; Johannsen, M.; Hazell, R. G.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 1998, 37, 3121–3124.
19. Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.;
Jørgensen, K. A. J. Am. Chem. Soc. 1998, 120, 8599–
8605.
20. Yao, S.; Roberson, M.; Reichel, F.; Hazell, R. G.;
Jørgensen, K. A. J. Org. Chem. 1999, 64, 6677–
6687.
4.3. Procedure for the catalytic allylic oxidation
21. Abblati, G.; Clerici, F.; Gelmi, M. L.; Gambini, A.; Pilati,
T. J. Org. Chem. 2001, 66, 6299–6304.
22. Ji, J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger,
S. J.; Morton, H. E. J. Am. Chem. Soc. 1999, 121, 10215–
10216.
23. van Lingen, H. L.; Zhuang, W.; Hansen, T.; Rytjes, F. P.
J. T.; Jørgensen, K. A. Org. Biomol. Chem. 2003, 1, 1953–
1958.
To a stirred solution of CuOTFÆ0.5C6H6 (12.6mg,
50lmol, 2.5mol%) in anhydrous acetone (4mL) was
added the bis(oxazoline) (120lmol, 6mol%). After stir-
ring for 1h at rt, the alkene (10mmol, 10equiv) in ace-
tone (2mL) was added to this solution, followed by
the dropwise addition of tert-butyl perbenzoate
(182mg, 1mmol, 1equiv). The resulting solution was