Page 11 of 13
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Navrátil, R.; Jasík, J.; Thibault, T.; Srnec, M.; Costas, M.; Roithóva,
J. J. Am. Chem. Soc. 2017, 139, 2757–2765.
9) (a) Shaik, S.; Hirao, H.; Kumar, D. Acc. Chem. Res. 2007, 40,
32–542. (b) Hirao, H.; Que, L., Jr.; Nam, W.; Shaik, S. Chem. Eur.
J. 2008, 14, 1740–1756.
10) (a) Mandal, D.; Ramanan, R.; Usharani, D.; Janardanan, D.;
Wu, X.; Seo, M. S.; Cho, K.ꢀB.; Yoon, H.; Park, Y. J.; Fukuzumi, S.;
Pushkar, Y. N.; Nam, W., J. Am. Chem. Soc. 2013, 135, 6388ꢀ6391.
(d) GarciaꢀBosch, I.; Company, A.; Cady, C. W.; Styring, S.; Browne,
W. R.; Ribas, X.; Costas, M., Angew. Chem. Int. Ed. 2011, 50, 5648–
5653. (e) Wang, D.; Ray, K.; Collins, M. J.; Farquhar, E. R.; Frisch, J.
R.; Gómez, L.; Jackson, T. A.; Kerscher, M.; Waleska, A.; Comba, P.;
Costas, M.; Que, L. Jr. Chem. Sci. 2013, 4, 282–291.
(30) Dunitz, J. D., Chem. Biol.1995, 2, 709–712.
( 31 ) Collins, T. J.; Ryabov, A. D. Chem. Rev. DOI:
10.1021/acs.chemrev.7b00034
(32) (a) Warren, J. J.; Tronic, T. A.; Mayer, J. M., Chem. Rev.
2010, 110, 6961–7001. (b) Geng, C.; Ye, S.; Neese, F. Dalton Trans.
2014, 43, 6079–6086.
(33) (a) Harvey, J. N. Annu. Rep. Prog. Chem., Sect. C: Phys.
Chem. 2006, 102, 203−226. (b) Ghosh, A. J. Biol. Inorg. Chem. 2006,
11, 712−724. (c) Pierloot, K.; Vancoillie, S. J. Chem. Phys. 2006,
125, 124303. (d) Pierloot, K.; Vancoillie, S. J. Chem. Phys. 2008,
128, 034104. (e) Vancoillie, S.; Zhao, H.; Radon, M.; Pierloot, K. J.
Chem. Theory Comput. 2010, 6, 576−582.
(34) Altun, A.; Breidung, J.; Neese, F.; Thiel, W. J. Chem. Theory
Comput. 2014, 10, 3807–3820.
(35) (a) Roos, B. O. Adv. Chem. Phys. 1987, 69, 399−445. (b)
Ruedenberg, K.; Cheung, L. M.; Elbert, S. T. Int. J. Quantum Chem.
1979, 16, 1069−1101. Ross, B. O.; Taylor, P. R.; Siegbahn, P. E. M.
Chem. Phys. 1980, 48, 157–173.
(36) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.;
Malrieu, J. P. J. Chem. Phys. 2001, 114, 10252–10264.
(37) Ye, S.; Xue, G.; Krivokapic, I.; Petrenko, T.; Bill, E.; Que, L.,
Jr; Neese, F. Chem. Sci. 2015, 6, 2909–2921.
(38) (a) Jannuzzi, S. A. V; Phung, Q. M.; Domingo, A.; Formiga,
A. L. B.; Pierloot, K. Inorg. Chem. 2016, 55, 5168–5179. (b) Alcoverꢀ
Fortuny, G.; Caballol, R.; Pierloot, K.; de Graaf, C. Inorg. Chem.
2016, 55, 5274–5280.
(39) Pierloot, K.; Phung, Q. M.; Domingo, A. J. Chem. Theory
Comput. 2017, 13, 537–553.
(40) (a) Mondal, B.; Roy, L.; Neese, F.; Ye, S. Isr. J. Chem. 2016,
56, 763–772. (b) Ye, S.; Neese, F. Proc. Natl. Acad. Sci. 2011, 108,
1228–1233.
(
5
(
Wang, B.; Shaik, S. J. Am. Chem. Soc. 2015, 137, 722–733. (b)
Mandal, D.; Shaik, S. J. Am. Chem. Soc. 2016, 138, 2094–2097.
(
11) (a) England, J.; Prakash, J.; Cranswick, M. A.; Mandal, D.;
Guo, Y.; Münck, E.; Shaik, S.; Que, L., Jr. Inorg. Chem. 2015, 54,
828−7839. (b) Kwon, Y. H.; Mai, B. K.; Lee, Y. M.; Dhuri, S. N.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
7
Mandal, D.; Cho, K. B.; Kim, Y.; Shaik, S.; Nam, W. J. Phys. Chem.
Lett. 2015, 6, 1472–1476.
(12) Meyer, S.; Klawitter, I.; Demeshko, S.; Bill, E.; Meyer, F.
Angew. Chem. Int. Ed. 2013, 52, 901–905.
(
13) Rohde, J.ꢀU.; In, J.ꢀH.; Lim, M. H.; Brennessel, W. W.;
Bukowski, M. R.; Stubna, A.; Münck, E.; Nam, W.; Que, L., Jr.
Science 2003, 299, 1037−1039.
(
14) Ye, S.; Kupper, C.; Meyer, S.; Andris, E.; Navrátil, R.; Krahe,
O.; Mondal, B.; Atanasov, M.; Bill, E.; Roithová, J.; Meyer, F.;
Neese, F. J. Am. Chem. Soc. 2016, 138, 14312ꢀ14325.
(
15) Jackson, T. A.; Rohde, J.ꢀU.; Seo, M. S.; Sastri, C. V.;
DeHont, R.; Ohta, T.; Kitagawa, T.; Münck, E.; Nam, W.; Que, L.,
Jr.; Stubna, A. J. Am. Chem. Soc. 2008, 130, 12394−12407.
(
16) Decker, A.; Rohde, J.ꢀU.; Klinker, E. J.; Wong, S. D.; Que, L.,
Jr.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 15983−15996.
(17) Cho, K.ꢀB.; Hirao, H.; Shaik, S.; Nam, W. Chem. Soc. Rev.
2
016, 45, 1197–1210.
18) Kleespies, S. T.; Oloo, W. N.; Mukherjee, A.; Que, L., Jr.
Inorg. Chem. 2015, 54, 5053−5064.
19) Luo, Y.ꢀR. Handbook of Bond Dissociation Energies in Orꢀ
(
(
ganic Compounds; CRC Press LLC: Boca Raton, FL, 2003.
(20) Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T.
A.; Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L., Jr.;
Shaik, S.; Nam, W. Proc. Natl. Acad. Sci. 2007, 104, 19181–19186.
(
21) Planas, O.; Clémancey, M.; Latour, J.ꢀM.; Company, A.; Cosꢀ
tas, M. Chem. Commun. 2014, 50, 10887 – 10890.
22) (a) Bell, R. P. Proc. R. Soc. London, Ser. A 1936, 154, 414–
429. (b) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1938, 34, 11–
3.
(
(41) (a) Ye, S.; Neese, F. Curr. Op. Chem. Biol. 2009, 13, 89–98.
(b) Shaik, S.; Chen, H.; Janardanan, D. Nat. Chem. 2010, 3, 19–27.
(42) Malrieu, J. P.; Guihéry, N.; Calzado, C. J.; Angeli, C. J. Comꢀ
put. Chem. 2006, 28, 35–50.
2
(
23) The error of this KIE value was derived from several experiꢀ
ments and error bars for each individual kobs value. Because of the
very slow reactions with deuterated substrates at low temperatures,
the differences in rate for the different concentrations of DHAꢀd are
4
relatively large compared to the experimental error in the determinaꢀ
(
(
43) Pierloot, K. Mol. Phys. 2003, 101, 2083–2094.
44) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem.2011,
3
2, 1456–1465.
tion of kobs values, resulting in a rather high uncertainty for the KIE.
(45) Siegbahn, P. E. M. J. Biol. Inorg. Chem. 2006, 11, 695–701.
(46) Anneser, M. R.; Haslinger, S.; Pöthig, A.; Cokoja, M.; Basset,
(
24) Price, J. C.; Barr, E. W.; Tirupati, B.; Bollinger, M., Jr.;
Krebs, C. Biochemistry 2003, 42, 7497–7508.
25) Nesheim, J. C.; Lipscomb, J. D. Biochemistry 1996, 35,
J.ꢀM.; Kühn, F. E. Inorg. Chem. 2015, 54, 3797–3804.
47) Cantú Reinhard, F. G.; de Visser, S. P. Chem. Eur. J. 2017,
3, 2935–2944.
48) Bernasconi, L.; Baerends, E. J. Eur. J. Inorg. Chem. 2008,
(
(
1
0240–10247.
2
(26) (a) Kwart, H., Acc. Chem. Res. 1982, 15, 401–408. (b)
(
Knapp, M. J.; Klinman, J. P., Eur. J. Biochem. 2002, 269, 3113–3121.
c) Wang, Q.; Sheng, X.; Horner, J. H.; Newcomb, M. et al., J. Am.
1672–1681.
(
(49) (a) Andersson, K.; Malmqvist, P.ꢀÅ.; Roos, B. O.; Sadlej, A.
J.; Wolinski, K. J. Phys. Chem. 1990, 94, 5483−5488. (b) Andersson,
K.; Malmqvist, P.ꢀÅ.; Roos, B. O. J. Chem. Phys. 1992, 96,
1218−1226.
(50) Verma, P.; Vogiatzis, K. D.; Planas, N.; Borycz, J.; Xiao, D.
J.; Long, J. R.; Gagliardi, L.; Truhlar, D. G. J. Am. Chem. Soc. 2015,
137, 5770–5781.
(51) Johansson, A. J.; Blomberg, M. R. A.; Siegbahn, P. E. M. J.
Phys. Chem. C 2007, 111, 12397–12406.
(52) Lundberg, M.; Siegbahn, P. E. M. J. Chem. Phys. 2005, 122,
224103.
Chem. Soc. 2009, 131, 10629–10636. d) Klinman, J. P., Chem. Phys.
Lett. 2009, 471, 179–193.
(
27) Company, A.; Prat, I.; Frisch, J. R.; MasꢀBallesté, R.; Güell,
M.; Juhász, G.; Ribas, X.; Münck, E.; Luis, J. M.; Que, L. Jr.; Costas,
M. Chem. Eur. J. 2011, 17, 1622 – 1634.
(28) (a) Geng, C.; Ye S.; Neese, F. Angew. Chem., Int. Ed. 2010,
49, 5717; (b) Cho, K.ꢀB.; Wu, X.; Lee, Y.ꢀM.; Kwon, Y. H.; Shaik,S.;
Nam W. J. Am. Chem. Soc. 2012, 134, 20222; (c) Rana, S.; Dey, A.;
Maiti, D. Chem. Commun. 2015, 51, 14469–14472.
(
29) (a) Parsell, T. H.; Behan, R. K.; Green, M. T.; Hendrich, M.
P.; Borovik, A. S., J. Am. Chem. Soc. 2006, 128, 8728–8729. (b)
Parsell, T. H.; Yang, M.ꢀY.; Borovik, A. S., J. Am. Chem.
Soc. 2009, 131, 2762–2763. (c) Chen. J.; Lee, Y.ꢀM.; Davis, K. M.;
(53) Harvey, J. N. WIREs Comput. Mol. Sci. 2013, 4, 1–14.
(54) (a) Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J.
Am. Chem. Soc. 2001, 123, 8271–8290. (b) Decker, A.; Rohde, J.ꢀU.;
ACS Paragon Plus Environment