Page 9 of 12
Journal of the American Chemical Society
Coordination To Lower the Symmetry of the Mn3CaO4 Cubane:
Demonstration That Electronic Effects Facilitate Binding of a Fifth
Metal. J. Am. Chem. Soc. 2014, 136, 14373-14376.
Chen, J.; Yoon, H.; Lee, Y.-M.; Seo, M. S.; Sarangi, R.;
Fukuzumi, S.; Nam, W., Tuning the reactivity of mononuclear
nonheme manganese(iv)-oxo complexes by triflic acid. Chemical
Science 2015, 6, 3624-3632.
26.
Lee, S. W.; Miller, G. A.; Campana, C. F.; Maciejewski, M.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
L.; Trogler, W. C., Generation of mono- and dianions of 1,4-diphenyl-
2-tetrazene by nonoxidative N-N bond formation. A novel route to a 2-
tetrazene, a silacyclotetrazene, and the tetrazenide complex (1,4-
diphenyltetrazenido)bis(triethylphosphine) palladium. J. Am. Chem.
Soc. 1987, 109, 5050-5051.
7
.
27.
King, E. R.; Sazama, G. T.; Betley, T. A., Co(III) Imidos
8
.
Yoon, H.; Lee, Y.-M.; Wu, X.; Cho, K.-B.; Sarangi, R.;
Exhibiting Spin Crossover and C–H Bond Activation. J. Am. Chem.
Soc. 2012, 134, 17858-17861.
28.
Terminal Imido Rhodium Complexes. Angew. Chem. Int. Ed. 2014,
53, 5614-5618.
29.
of a low-valent chromium dinitrogen complex. Inorg. Chim. Acta
2011, 369, 103-119.
30.
M. Cafferkey, S.; K. N. Sweet, T.; B. Hursthouse, M., Reactions of
iridium and ruthenium complexes with organic azides. J. Chem. Soc.
Dalton Trans. 1997, 3177-3184.
Nam, W.; Fukuzumi, S. Enhanced Electron-Transfer Reactivity of
Nonheme Manganese(IV)–Oxo Complexes by Binding Scandium Ions.
J. Am. Chem. Soc. 2013, 135, 9186–9194
Geer, A. M.; Tejel, C.; López, J. A.; Ciriano, M. A.,
9.
Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.;
Yano, J.; Hendrich, M. P.; Borovik, A. S., High-spin Mn–oxo
complexes and their relevance to the oxygen-evolving complex within
photosystem II. Proc. Natl. Acad. Sci. USA 2015, 112, 5319-5324.
Monillas, W. H.; Yap, G. P. A.; Theopold, K. H., Reactivity
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
0.
Rivalta, I.; Brudvig, G. W.; Batista, V. S., Oxomanganese
A. Danopoulos, A.; S. Hay-Motherwell, R.; Wilkinson, G.;
complexes for natural and artificial photosynthesis. Curr. Op. Chem.
Biol. 2012, 16, 11-18.
1
1.
Reddig, N.; Pursche, D.; Kloskowski, M.; Slinn, C.;
Baldeau, S. M.; Rompel, A., Tuning the catalase activity of dinuclear
manganese complexes by utilizing different substituted tripodal
ligands. Eur. J. Inorg. Chem. 2004, 879-887.
31.
Obenhuber, A. H.; Gianetti, T. L.; Berrebi, X.; Bergman, R.
G.; Arnold, J., Reaction of (Bisimido)niobium(V) Complexes with
Organic Azides: [3 + 2] Cycloaddition and Reversible Cleavage of β-
Diketiminato Ligands Involving Nitrene Transfer. J. Am. Chem. Soc.
2014, 136, 2994-2997.
12.
Abdolahzadeh, S.; de Boer, J. W.; Browne, W. R., Redox-
State Dependent Ligand Exchange in Manganese-Based Oxidation
Catalysis. Eur. J. Inorg. Chem. 2015, 3432-3456.
32.
Barloy, L.; Gauvin, Régis M.; Osborn, John A.; Sizun, C.;
1
3.
Lee, W.-T.; Muñoz, S. B.; Dickie, D. A.; Smith, J. M.,
Graff, R.; Kyritsakas, N., Synthesis, Crystal Structure and Solution
Behaviour of Palladium(II) Complexes with Tetrazenido or Amido
Ligands and Potentially Tridentate Ligands. Eur. J. Inorg. Chem. 2001,
2001, 1699-1707.
Ligand Modification Transforms a Catalase Mimic into a Water
Oxidation Catalyst. Angew. Chem. Int. Ed. 2014, 53, 9856-9859.
14.
Mayer, J. M.; Rhile, I. J.; Larsen, F. B.; Mader, E. A.;
Markle, T. F.; DiPasquale, A. G., Models for proton-coupled electron
transfer in photosystem II. Photosynth. Res. 2006, 87, 3-20.
33.
Lee, S. W.; Trogler, W. C., Synthesis, structure, and
properties of dicarbonyl bis(phosphine) 1,4-diphenyltetraazabutadiene
complexes of molybdenum and tungsten. Organometallics 1990, 9,
1470-1478.
1
5.
Hammes-Schiffer, S.; Hatcher, E.; Ishikita, H.; Skone, J. H.;
Soudackov, A. V., Theoretical studies of proton-coupled electron
transfer: Models and concepts relevant to bioenergetics. Coord. Chem.
Rev. 2008, 252, 384-394.
34.
Michelman, R. I.; Bergman, R. G.; Andersen, R. A.,
Synthesis, exchange reactions, and metallacycle formation in
osmium(II) imido systems: formation and cleavage of osmium-
nitrogen bonds. Organometallics 1993, 12, 2741-2751.
1
6.
Mayer, J. M.; Rhile, I. J., Thermodynamics and kinetics of
proton-coupled electron transfer: stepwise vs. concerted pathways.
Biochim. Biophys. Acta-Bioenerg. 2004, 1655, 51-58.
35.
Meyer, K. E.; Walsh, P. J.; Bergman, R. G., A Mechanistic
17.
Proton-Coupled Electron Transfer. Acc. Chem. Rev. 2016, 49, 1546-
556.
8.
Gentry, E. C.; Knowles, R. R., Synthetic Applications of
Study of the Cycloaddition-Cycloreversion Reactions of Zirconium-
Imido Complex Cp2Zr(N-t-Bu)(THF) with Organic Imines and
Organic Azides. J. Am. Chem. Soc. 1995, 117, 974-985.
1
1
Dogutan, D. K.; Bediako, D. K.; Graham, D. J.; Lemon, C.
36.
Mock, M. T.; Popescu, C. V.; Yap, G. P. A.; Dougherty, W.
M.; Nocera, D. G., Proton-coupled electron transfer chemistry of
hangman macrocycles: Hydrogen and oxygen evolution reactions. J.
Porphyr. Phtalocya. 2015, 19, 1-8.
G.; Riordan, C. G., Monovalent Iron in a Sulfur-Rich Environment.
Inorg. Chem. 2008, 47, 1889-1891.
37.
Margulieux, G. W.; Chirik, P. J. Synthesis and Electronic Structure
Diversity of Pyridine(diimine)iron Tetrazene Complexes. Inorg. Chem.
2018, 57, 9634–9643.
Bowman, A. C.; Tondreau, A. M.; Lobkovsky, E.;
1
9.
Yin, P.; Zhang, Q.; Shreeve, J. n. M., Dancing with
Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies
for N-Heterocyclic Frameworks in High Energy Density Materials.
Acc. Chem. Rev. 2016, 49, 4-16.
38.
Cowley, R. E.; Bill, E.; Neese, F.; Brennessel, W. W.;
20.
Fischer, D.; Klapotke, T. M.; Stierstorfer, J., 1,5-
Holland, P. L., Iron(II) Complexes with Redox-Active Tetrazene
(RNNNNR) Ligands. Inorg. Chem. 2009, 48, 4828-4836.
39.
Busch, D. H., Tetragonal cobalt(III) complexes containing tetradentate
macrocyclic amine ligands with different degrees of unsaturation.
Inorg. Chem. 1972, 11, 2893-2901.
Di(nitramino)tetrazole: High Sensitivity and Superior Explosive
Performance. Angew. Chem. Int. Ed. 2015, 54, 10299-10302.
Jackels, S. C.; Farmery, K.; Barefield, E. K.; Rose, N. J.;
2
1.
Heppekausen, J.; Klapotke, T. M.; Sproll, S. A., Synthesis
of Functionalized Tetrazenes as Energetic Compounds. J. Org. Chem.
2009, 74, 2460-2466.
22.
Klapotke, T. M.; Mayer, P.; Schulz, A.; Weigand, J. J., 1,4-
40.
Bakac, A.; Espenson, J. H., Preparation, properties, and
bis- 1-methyltetrazol-5-yl -1,4-dimethyl-2-tetrazene: A stable, highly
energetic hexamer of diazomethane (CH2N2)(6). Propell. Explos.
Pyrot. 2004, 29, 325-332.
crystal structure of a novel series of macrocyclic organocobalt
complexes. Inorg. Chem. 1987, 26, 4353-4355.
41.
M.; Nagasawa, A.; Sato, M., Fe(III)–azido complex with tetragonally
compressed octahedral FeN6 geometry: synthesis, spectroscopic and
X-ray single crystal analysis of [Fe(cyclam)(N3)2](ClO4). Polyhedron
1999, 18, 2201-2204.
Koner, S.; Iijima, S.; Mizutani, F.; Harata, K.; Watanabe,
2
3.
Vaddypally, S.; McKendry, I. G.; Tomlinson, W.; Hooper,
J. P.; Zdilla, M. J., Electronic Structure of Manganese Complexes of
the Redox-Non-innocent Tetrazene Ligand and Evidence for the Metal-
Azide/Imido Cycloaddition Intermediate. Chem. Eur. J. 2016, 22,
1
0548-10557.
4. Gehrmann, T.; Lloret Fillol, J.; Wadepohl, H.; Gade, L. H.,
42.
Doro, F. G.; Ferreira, K. Q.; da Rocha, Z. N.; Caramori, G.
2
F.; Gomes, A. J.; Tfouni, E., The versatile ruthenium(II/III)
tetraazamacrocycle complexes and their nitrosyl derivatives. Coord.
Chem. Rev. 2016, 306, 652-677.
Synthesis, Characterization, and Thermal Rearrangement of Zirconium
Tetraazadienyl and Pentaazadienyl Complexes. Organometallics
2
012, 31, 4504-4515.
5. Cramer, S. A.; Hernandez Sanchez, R.; Brakhage, D. F.;
43.
Tfouni, E.; Ferreira, K. Q.; Doro, F. G.; da Silva, R. S.; da
2
Rocha, Z. N., Ru(II) and Ru(III) complexes with cyclam and related
species. Coord. Chem. Rev. 2005, 249, 405-418.
Jenkins, D. M., Probing the role of an FeIV tetrazene in catalytic
aziridination. Chem. Commun. 2014, 50, 13967-13970.
ACS Paragon Plus Environment