Page 3 of 4
Journal of the American Chemical Society
hydride and triflic anhydride to give enol triflate 3 in 62% yield
over two steps.
(4) Boekelheide, V.; Weinstock, J.; Grundon, M. F.; Sauvage, G. L.;
Angello, E. J. The Structure of β-Erythroidine and its Derivatives. J. Am.
Chem. Soc. 1953, 75, 2550.
1
2
3
4
5
6
7
8
9
Moving forward, reduction of the ester and subsequent TBS-
protection furnished silyl ether 18. Silyl protection was necessary,
since the corresponding alcohol was unstable. We envisioned that
the final two carbons of the lactone ring would be installed via an
enolate coupling, however it was quickly realized that base-
(5) García-Mateos, R.; Soto-Hernández, M.; Vibrans, H. Erythrina
Americana Miller ("Colorin"; Fabaceae), a versatile resource from Mexico:
a review. Econ. Bot. 2001, 55, 391.
(6) Majinda, R.R. An Update of Erythrinan Alkaloids and Their
Pharmacological Activities. In Progress in the Chemistry of Organic
Natural Products; Kinghorn, D. A.; Falk, H.; Gibbons, S.; Kobayashi, J.;
Asakawa, Y.; Liu, J.-K., Ed.; Springer, Cham, 2018, pp 95–152.
dependent procedures, described by Hartwig, Buchwald and
25a-d
others,
were ineffective as the coupling precursor 18, rapidly
(7) Jensen, A. A.; Frølund, B.; Liljefors, T.; Krogsgaard-Larsen, P.
decomposed when exposed to basic conditions under slightly
elevated temperatures (see SI Table 4). We then turned to the
Neuronal Nicotinic Acetylcholine Receptors: Structural Revelations,
Target Identifications, and Therapeutic Inspirations. J. Med. Chem. 2005,
2
6
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
chemistry developed by Liu and coworkers, which allowed us to
circumvent this issue by installing the final two carbons using a
base-free decarboxylative coupling of cyanoacetate 19 to furnish α-
alkenyl nitrile 20. This is, to the best of our knowledge, the first
employment of this chemistry on an alkenyl system as well as in a
target-oriented synthesis. Ultimately, a process was developed in
which the cross coupling was telescoped with an acid mediated
hydrolysis, deprotection and lactonization-cascade, delivering (+)-
DHβE (1) in 13 steps from commercially available prolinone 7.
4
8, 4705.
(8) Shapiro, S.; Baker, A. B. Treatment of Paralysis Agitans with
Dihydro-beta-erythroidine. Am. J. Med. 1950, 8, 153.
9) Binger, G. B.; Devinich, G. Treatment of Two Cases of Tetanus
with d-Tubocurarine Chloride in Peanut Oil with Myricin. Anesthesiology
950, 11, 199.
10) Williams, M.; Robinson, J. Binding of the Nicotinic Cholinergic
Antagonist, Dihydro-β-Erythroidine, to Rat Brain Tissue. J. Neurosci.
(
1
(
1
984, 4, 2906.
(11) Badio, B.; Shi, D.; Martin, H. M.; Daly J. W. Antinociceptive
Effects of the Alkaloid Epibatidine: Further Studies on Involvement of
Nicotinic Receptors. Drug Dev. Res. 1995, 36, 46.
In summary, we have developed an enantioselective synthetic
route to the alkenoid family of non-aromatic Erythrina alkaloids
and the first total synthesis of (+)-DHβE (1). It is envisioned that
several intermediates from this synthetic sequence (in particular 15
and 17) will serve as versatile platforms from which structurally
diverse DHβE-congeners can be accessed. Such endeavors, will
serve to explore the structural requirements for nAChR-antagonism
and probe the potential of such derivatives in drug discovery.
Furthermore, the application of the current methodology to the
synthesis of other lactonic Erythrina alkaloids will also be
investigated.
(12) Andreasen, J.; Olsen, G.; Wiborg, O.; Redrobe, J. Antidepressant-
like Effects Antagonists, but Not Agonists, of Nicotinic Acetylcholine
Receptor in the Mouse Forced Swim and Mouse Tail Suspension Tests. J.
Psychopharmacol. 2009, 23, 797.
(13) Burman, M. S. Therapeutic Use of Curare and Erythroidine
Hydrochloride for Spastic and Dystonic States. Arch. Neurol. Psychiatry
1938, 41, 307.
(14) Heller, S. T.; Kiho, T.; Narayan, A. R. H.; Sarpong, R. Protic-
Solvent-Mediated Cycloisomerization of Quinoline and Isoquinoline
Propargylic Alcohols: Syntheses of (±)-3-Demethoxyerythratidinone and
(±)-Cocculidine. Angew. Chem. Int. Ed. 2013, 52, 11129.
(
15) a) Fukumoto, H.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Total
ASSOCIATED CONTENT
Supporting Information
Synthesis of (+)-β-Erythroidine. Angew. Chem. Int. Ed. 2006, 45, 2731. b)
He, Y.; Funk, R. L. Total Syntheses of (±)-β-Erythroidine and (±)-8-oxo-
β-Erythroidine by an Intramolecular Diels−Alder Cycloaddition of a 2-
Amidoacrolein. Org. Lett. 2006, 8, 3689. c) Kawasaki, T.; Onoda, N.;
Watanabe, H.; Kitahara, T. Total Synthesis of (±)-Cocculolidine.
Tetrahedron Lett. 2001, 42, 8003. d) Funk, R. L.; Belmar, J. Total synthesis
of (±)-Isophellibiline. Tetrahedron Lett. 2012, 53, 176. e) Jepsen, T. H.;
Glibstrup, E.; Crestey, F.; Jensen, A. A.; Kristensen, J. L. A Strategic
Approach to [6,6]-Bicyclic Lactones: Application Towards the CD
Fragment of DHβE. Beilstein J. Org. Chem. 2017, 13, 988. f) Jepsen, T. H.;
Jensen, A. A.; Lund, M. H.; Glibstrup, E.; Kristensen, J. L. Synthesis and
Pharmacological Evaluation of DH β E Analogs as Neuronal Nicotinic
Acetylcholine Receptor Antagonists. ACS Med. Chem Lett. 2014, 5, 766.
The Supporting Information is available free of charge on the ACS
Publications website at DOI: .
Experimental section including characterization (PDF)
AUTHOR INFORMATION
Corresponding Authors
*
*
(16) a) Trost, B. M.; Schäffner, B.; Osipov, M.; Wilton, D. A. A.
Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of β-
ketoesters: An Unusual Counterion Effect. Angew. Chem. Int. Ed. 2011, 50,
3
548. b) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-
ACKNOWLEDGMENT
Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chem. Rev.
2
003, 103, 2921.
This research was financially supported by the Innovation Fund
Denmark (Case no. 7038-00149B) and H. Lundbeck A/S. We thank
the Medicinal Chemistry department at H. Lundbeck A/S for
valuable resources and inputs. We would also like to thank Emil
Märcher-Rørsted for chromatographic aid.
(17) Vanrheenen, V.; Kelly, R. C.; Cha, D. Y. An Improved Catalytic
4
Oxidation of Olefins to Cis-1,2-Glycols Using Tertiary Amine Oxides
OsO
as the Oxidant. Tetrahedron Lett. 1976, 17, 1973.
18) a) Pappo, R.; Allen, D. S.; Lemieux, R. U.; Johnson, W. S. Osmium
Tetroxide-Catalyzed Periodate Oxidation of Olefinic Bonds. J. Org. Chem.
956, 21, 478. b) Li, W.; Chen, Z.; Yu, D.; Peng, X.; Wen, G.; Wang, S.;
(
1
Xue, F.; Liu, X.-Y.; Qin, Y. Asymmetric Total Syntheses of the
Akuammiline Alkaloids (-)-Strictamine and (-)-Rhazinoline. Angew. Chem.
Int. Ed. 2019, 58, 6059.
REFERENCES
(1) Reimann, E. Synthesis Pathways to Erythrina Alkaloids and
(19) a) Hartley, R. C.; Li, J.; Main, C. A.; Mckiernan, G. J. Titanium
Carbenoid Reagents for Converting Carbonyl Groups Into Alkenes.
Tetrahedron 2007, 63, 4825. b) Takai, K.; Hotta, Y.; Oshima, K.; Noazki,
H. Effective Methods of Carbonyl Methylenation Using CH I -Zn-Me A1
Erythrina Type Compounds. In Progress in the Chemistry of Organic
Natural Products; Herz, W.; Falk, H.; Kirby, G., Ed.; Springer, Vienna,
2
007; pp 2–56.
2
2
3
(2) Parsons, A. F.; Palframan, M.J. Erythrina and Related Alkaloids. In
2 2 4
and CH Br -Zn-TiCl System. Tetrahedron Lett. 1978, 27, 2417. c) Nozaki,
Alkaloids, Vol. 68; Cordell G. A., Ed.; Elsevier, York, 2010, pp 39–81.
3) Boekelheide, V. The Erythrina Alkaloids. In The Alkaloids:
Chemistry and Physiology; Elsevier, Rochester, New York, 1960, pp 201–
H.; Okazoe, T.; Hibino, J.; Takai, K. Chemoselective Methylenation With
a Methylenedianion Synthon. Tetrahedron Lett. 1985, 26, 5581. d) Hibino,
J.-I.; Okazoe, T.; Takai, K.; Nozaki, H. Carbonyl Methylenation of Easily
Enolizable Ketones. Tetrahedron Lett. 1985, 26, 5579. e) Tebbe, F. N.;
Parshall, G. W.; Reddy, G. S. Olefin Homologation with Titanium
(
227.
ACS Paragon Plus Environment