Inorganic Chemistry
Article
(26) Pirovano, P.; Berry, A. R.; Swart, M.; McDonald, A. R. Indirect
evidence for a Ni(III)-oxyl oxidant in the reaction of a Ni(II) complex
with peracid. Dalton Trans. 2018, 47 (1), 246−250.
(27) Donoghue, P. J.; Gupta, A. K.; Boyce, D. W.; Cramer, C. J.;
Tolman, W. B. An anionic, tetragonal copper(II) superoxide complex.
J. Am. Chem. Soc. 2010, 132, 15869−15871.
(44) Aboelella, N. W.; Kryatov, S. V.; Gherman, B. F.; Brennessel,
W. W.; Young, V. G., Jr.; Sarangi, R.; Rybak-Akimova, E. V.; Hodgson,
K. O.; Hedman, B.; Solomon, E. I.; Cramer, C. J.; Tolman, W. B.
Dioxygen Activation at a Single Copper Site: Structure, Bonding, and
Mechanism of Formation of 1:1 Cu-O2 Adducts. J. Am. Chem. Soc.
2004, 126, 16896−16911.
(28) Yang, L.; Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 955.
(29) Huang, D.; Holm, R. H. Reactions of the terminal Ni(II)-OH
group in substitution and electrophilic reactions with carbon dioxide
and other substrates: structural definition of binding modes in an
intramolecular Ni(II)···Fe(II) bridged site. J. Am. Chem. Soc. 2010,
132, 4693−4701.
(45) As the copper foil reference for these measurements was
calibrated to 8979 eV, as opposed to the conventional 8980.3 eV, this
causes all of the values to be red-shifted by 1.3 eV. Hence, if the
reference foil had been set at 8980.3 eV, as is convention, the values
obtained for the pre-edge would be 8979.4 eV for 1a and 8980.7 eV
for 1b. This is within the average range of 8979 ( 0.4 eV) for CuII
and 8981 ( 0.5 eV) for CuIII.
́
(30) Corona, T.; Pfaff, F. F.; Acuna-Pares, F.; Draksharapu, A.;
̃
Whiteoak, C. J.; Martin-Diaconescu, V.; Lloret-Fillol, J.; Browne, W.
R.; Ray, K.; Company, A. Reactivity of a Nickel(II) Bis(amidate)
Complex with meta-Chloroperbenzoic Acid: Formation of a Potent
Oxidizing Species. Chem. - Eur. J. 2015, 21 (42), 15029−15038.
(31) Corona, T.; Company, A. Spectroscopically Characterized
Synthetic Mononuclear Nickel-Oxygen Species. Chem. - Eur. J. 2016,
22 (38), 13422−13429.
(46) DuBois, J. L.; Mukherjee, P.; Stack, T. D. P.; Hedman, B.;
Solomon, E. I.; Hodgson, K. O. A Systematic K-edge X-ray
Absorption Spectroscopic Study of Cu(III) Sites. J. Am. Chem. Soc.
2000, 122, 5775−5787.
(47) Lytle, F. W.; Greegor, R. B.; Panson, J. Discussion of x-ray
absorption near edge structure: Application to Cu in the high-Tc
superconductors La1.8Sr0.2CuO4 and YBa2Cu3O7. Phys. Rev. B:
Condens. Matter Mater. Phys. 1988, 37 (4), 1550−1563.
(48) McManus, C.; Mondal, P.; Lovisari, M.; Twamley, B.;
McDonald, A. R. Carboxamidate Ligand Noninnocence in Proton
Coupled Electron Transfer. Inorg. Chem. 2019, 58 (7), 4515−4523.
(49) Guttenplan, J. B.; Cohen, S. G. Triplet energies, reduction
potentials, and ionization potentials in carbonyl-donor partial charge-
transfer interactions. J. Am. Chem. Soc. 1972, 94 (11), 4040−4042.
(50) Wagner, P. J.; Lam, H. M. H. Charge-transfer quenching of
triplet 5-trifluoroacetophenones. J. Am. Chem. Soc. 1980, 102 (12),
4167−4172.
(51) Marcus, R. A.; Sutin, N. Electron transfers in chemistry and
biology. Biochim. Biophys. Acta, Rev. Bioenerg. 1985, 811 (3), 265−
322.
(52) Ram, M. S.; Hupp, J. T. Linear free energy relations for
multielectron transfer kinetics: a brief look at the Broensted/Tafel
analogy. J. Phys. Chem. 1990, 94 (6), 2378−2380.
(32) Corona, T.; Draksharapu, A.; Padamati, S. K.; Gamba, I.;
́
Martin-Diaconescu, V.; Acuna-Pares, F.; Browne, W. R.; Company, A.
̃
Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent
Nickel-Oxygen Species. J. Am. Chem. Soc. 2016, 138 (39), 12987−
12996.
(33) Pirovano, P.; McDonald, A. R. Synthetic High-Valent M-O-X
Oxidants. Eur. J. Inorg. Chem. 2018, 2018 (5), 547−560.
(34) Donoghue, P. J.; Tehranchi, J.; Cramer, C. J.; Sarangi, R.;
Solomon, E. I.; Tolman, W. B. Rapid C-H bond activation by a
monocopper(III)-hydroxide complex. J. Am. Chem. Soc. 2011, 133,
17602−17605.
(35) Dhar, D.; Tolman, W. B. Hydrogen Atom Abstraction from
Hydrocarbons by a Copper(III)-Hydroxide Complex. J. Am. Chem.
Soc. 2015, 137 (3), 1322−1329.
(36) Gagnon, N.; Tolman, W. B. [CuO]+ and [CuOH]2+ complexes:
intermediates in oxidation catalysis? Acc. Chem. Res. 2015, 48 (7),
2126−2131.
(53) Weatherly, S. C.; Yang, I. V.; Thorp, H. H. Proton-Coupled
Electron Transfer in Duplex DNA: Driving Force Dependence and
Isotope Effects on Electrocatalytic Oxidation of Guanine. J. Am. Chem.
Soc. 2001, 123 (6), 1236−1237.
(37) Dhar, D.; Yee, G. M.; Spaeth, A. D.; Boyce, D. W.; Zhang, H.;
Dereli, B.; Cramer, C. J.; Tolman, W. B. Perturbing the Copper(III)-
Hydroxide Unit through Ligand Structural Variation. J. Am. Chem.
Soc. 2016, 138 (1), 356−368.
(38) Dhar, D.; Yee, G. M.; Markle, T. F.; Mayer, J. M.; Tolman, W.
B. Reactivity of the copper(III)-hydroxide unit with phenols. Chem.
Sci. 2017, 8 (2), 1075−1085.
(39) Kau, L. s.; Spira-Solomon, D. J.; Spira-Solomon-Penner-Hahn,
J. E.; Hodgson, K. O.; Solomon, E. I. X-ray Absorption Edge
Determination of the Oxidation State and Coordination Number of
Copper: Application to the Type 3 Site in Rhus vernicifera Laccase
and Its Reaction with Oxygen. J. Am. Chem. Soc. 1987, 109 (21),
6433−6442.
(54) Lee, J. Y.; Peterson, R. L.; Ohkubo, K.; Garcia-Bosch, I.; Himes,
R. a.; Woertink, J.; Moore, C. D.; Solomon, E. I.; Fukuzumi, S.; Karlin,
K. D. Mechanistic insights into the oxidation of substituted phenols
via hydrogen atom abstraction by a cupric-superoxo complex. J. Am.
Chem. Soc. 2014, 136, 9925−9937.
(55) Garcia-Bosch, I.; Cowley, R. E.; Díaz, D. E.; Peterson, R. L.;
Solomon, E. I.; Karlin, K. D. Substrate and Lewis Acid Coordination
Promote O-O Bond Cleavage of an Unreactive L2CuII (O22‑) Species
2
to Form L2CuIII2(O)2 Cores with Enhanced Oxidative Reactivity. J.
Am. Chem. Soc. 2017, 139 (8), 3186−3195.
(40) Chang, H. C.; Lo, F. C.; Liu, W. C.; Lin, T. H.; Liaw, W. F.;
Kuo, T. S.; Lee, W. Z. Ambient stable trigonal bipyramidal
copper(III) complexes equipped with an exchangeable axial ligand.
Inorg. Chem. 2015, 54 (11), 5527−5533.
(41) DuBois, J. L.; Mukherjee, P.; Colier, A. M.; Mayer, J. M.;
Solomon, E. I.; Hedman, B.; Stack, T. D. P.; Hodgson, K. O. Cu K-
edge XAS study of the [Cu2(μ-O)2] core: Direct experimental
evidence for the presence of Cu(III). J. Am. Chem. Soc. 1997, 119
(36), 8578−8579.
(42) Sarangi, R.; Aboelella, N.; Fujisawa, K.; Tolman, W. B.;
Hedman, B.; Hodgson, K. O.; Solomon, E. I. X-ray Absorption Edge
Spectroscopy and Computational Studies on LCuO2 Species:
Superoxide-CuII versus Peroxide-CuIII Bonding. J. Am. Chem. Soc.
2006, 128, 8286−8296.
(56) Bailey, W. D.; Dhar, D.; Cramblitt, A. C.; Tolman, W. B.
Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Re-
actions of Phenols with a Copper Superoxide Complex. J. Am. Chem.
Soc. 2019, 141 (13), 5470−5480.
(57) Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic
Compounds; CRC Press, 2002.
(58) Brigati, G.; Lucarini, M.; Mugnaini, V.; Pedulli, G. F.
Determination of the Substituent Effect on the O-H Bond
Dissociation Enthalpies of Phenolic Antioxidants by the EPR Radical
Equilibration Technique. J. Org. Chem. 2002, 67 (14), 4828−4832.
(59) Kundu, S.; Miceli, E.; Farquhar, E. R.; Ray, K. Mechanism of
phenol oxidation by heterodinuclear NiCu bis(μ-oxo) complexes
involving nucleophilic oxo groups. Dalton Trans. 2014, 43, 4264−
4267.
(43) Sarangi, R.; George, S. D. B.; Rudd, D. J.; Szilagyi, R. K.; Ribas,
X.; Rovira, C.; Almeida, M.; Hodgson, K. O.; Hedman, B.; Solomon,
E. I. Sulfur K-edge X-ray absorption spectroscopy as a probe of ligand-
metal bond covalency: Metal vs ligand oxidation in copper and nickel
dithiolene complexes. J. Am. Chem. Soc. 2007, 129 (8), 2316−2326.
(60) Mayer, J. M. Understanding hydrogen atom transfer: from
bond strengths to Marcus theory. Acc. Chem. Res. 2011, 44, 36−46.
(61) Bryant, J. R.; Mayer, J. M. Oxidation of C-H Bonds by
[(bpy)2(py)RuIVO]2+ Occurs by Hydrogen Atom Abstraction. J. Am.
Chem. Soc. 2003, 125 (34), 10351−10361.
J
Inorg. Chem. XXXX, XXX, XXX−XXX