and anionic micelles on a spontaneous SN2 hydrolysis fits the
generalization that cationic and betaine micelles behave simi-
larly as reaction media.9b,10,11 Rate enhancements of reactions
of anionic reagents are generally lower with betaine sulfonate
than with cationic micelles but these differences are due to
relatively weak binding of anions to betaine micelles, and not to
reactivities at micellar surfaces.27 We can explain rate effects on
a variety of spontaneous reactions in terms of a lower polarity
and water availability in the interfacial region, relative to bulk
water,6,7,23 together with electrical asymmetry in this region,
which generates the differences between cationic and anionic
micelles.5d
The E1cB reaction of the carbanion of a fluorenyl carboxylic
ester also illustrates the role of charge asymmetry at micellar
surfaces. In this reaction negative charge is dispersed out of the
hydrophobic fluorenyl group in the ketene-like transition state.
Rate effects are small, but reaction is inhibited by cationic and
betaine micelles and accelerated by anionic and phospholipid-
derived micelles.11
We note that micellar effects on rates of spontaneous reac-
tions may be very large, as in decarboxylations,9 or small as in
these SN2 hydrolyses or the E1cB reaction.11 They are quali-
tatively understandable in terms of a simple model of the
micelle–water interface and evidence on its hydration and polar-
ity.6,7 These considerations should also apply to reactions in
other association colloids, e.g., microemulsions and vesicles.1,5c
However, changes in the properties of the interfacial region,
induced, for example, by changes in the head group struc-
ture, can induce modest rate effects depending on reaction
mechanism.
References
1 (a) J. H. Fendler, Membrane Mimetic Chemistry, Wiley-Interscience,
New York, 1982; (b) L. S. Romsted, in Surfactants in Solution, ed.
K. L. Mittal and B. Lindman, Plenum Press, New York, 1984, vol. 2,
p. 1015; (c) C. A. Bunton and G. Savelli, Adv. Phys. Org. Chem.,
1986, 22, 213; (d) C. A. Bunton, F. Nome, F. H. Quina and L. S.
Romsted, Acc. Chem. Res., 1991, 24, 357.
2 (a) R. Bacaloglu, C. A. Bunton and F. Ortega, J. Phys. Chem., 1989,
93, 1497; (b) R. Bacaloglu, C. A. Bunton, G. Cerichelli and
F. Ortega, J. Phys. Chem., 1990, 94, 5068.
3 C. Bonan, R. Germani, P. P. Ponti, G. Savelli, G. Cerichelli,
R. Bacaloglu and C. A. Bunton, J. Phys. Chem., 1990, 94, 5331.
4 G. Cerichelli, L. Luchetti, G. Mancini, M. N. Muzzioli, R. Germani,
P. P. Ponti, N. Spreti, G. Savelli and C. A. Bunton, J. Chem. Soc.,
Perkin Trans. 2, 1989, 1081.
5 (a) F. M. Menger, Acc. Chem. Res., 1979, 12, 111; (b) N. Fadnavis
and J. B. F. N. Engberts, J. Org. Chem., 1982, 47, 152; (c) W. H.
Noordman, W. Blokzijl, J. B. F. N. Engberts and M. J. Blandamer,
J. Chem. Soc., Perkin Trans. 2, 1995, 1411; (d) C. A. Bunton, in
Nucleophilicity, ed., J. M. Harris and S. P. McManus, Adv. Chem.
Ser., No. 215, American Chemical Society, Washington, DC., 1987,
ch. 29.
6 (a) K. A. Zachariasse, N. Y. Phuc and B. Kozankiewicz, J. Phys.
Chem., 1981, 85, 2672; (b) C. Ramachandran, R. A. Pyter and
P. Mukerjee, J. Phys. Chem., 1982, 86, 3198; (c) E. J. R. Sudhölter,
G. B. van der Langkruis and J. B. F. N. Engberts, Recl. Trav. Chim.
Pays-Bas Belg., 1979, 99, 73; (d) R. Zana, in Surfactant Solutions.
New Methods of Investigation, ed. R. Zana, M. Dekker, Inc., New
York, 1987, p. 272.
7 (a) M. H. Abraham, H. C. Chadha, J. P. Dixon, C. Rafolos and
C. Treiner, J. Chem. Soc., Perkin Trans. 2, 1995, 887; (b) F. H. Quina,
E. O. Alonso and J. P. S. Farah, J. Phys. Chem., 1995, 99, 11 708;
(c) M. H. Abraham, H. C. Chadha, J. P. Dixon, C. Rafolos and
C. Treiner, J. Chem. Soc., Perkin Trans. 2, 1997, 19.
8 (a) H. Al-Lohedan, C. A. Bunton and M. M. Mhala, J. Am. Chem.
Soc., 1982, 104, 6654; (b) C. A. Bunton and S. Ljunggren, J. Chem.
Soc., Perkin Trans. 2, 1984, 355.
9 (a) C. A. Bunton, M. J. Minch, J. Hidalgo and L. Sepulveda, J. Am.
Chem. Soc., 1973, 95, 3262; (b) P. Di Profio, R. Germani, G. Savelli,
G. Cerichelli, N. Spreti and C. A. Bunton, J. Chem. Soc., Perkin
Trans. 2, 1996, 1505.
10 F. Del Rosso, A. Bartoletti, P. Di Profio, R. Germani, G. Savelli,
A. Blaskó and C. A. Bunton, J. Chem. Soc., Perkin Trans. 2, 1995,
673.
11 V. R. Correia, I. M. Cuccovia, M. Stelmo and H. Chaimovich,
J. Am. Chem. Soc., 1992, 114, 2144.
12 C. A. Bunton, M. M. Mhala and J. R. Moffatt, J. Org. Chem.,
1985, 50, 4921.
13 A. Williams, Acc. Chem. Res., 1989, 22, 387.
14 W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill
Co., New York, 1969, p. 91.
15 J. F. Rathmann and S. D. Christian, Langmuir, 1990, 6, 391.
16 P. Di Profio, Ph.D. Thesis, University of Perugia, 1996.
17 F. M. Menger and C. E. Portnoy, J. Am. Chem. Soc., 1967, 89, 4698.
18 H. Al-Lohedan, C. A. Bunton and J. R. Moffatt, J. Phys. Chem.,
1983, 87, 332.
19 R. Bacaloglu, C. A. Bunton, G. Cerichelli and F. Ortega, J. Phys.
Chem., 1989, 93, 1490.
20 M. C. R. Symons, Acc. Chem. Res., 1981, 14, 179.
21 J. D. Morgan, D. H. Napper and G. G. Warr, J. Phys. Chem., 1995,
99, 9458.
Experimental
Materials
Preparation and purification of MeONs and the surfactants
have been described.2,10 Critical micelle concentrations (c.m.c./
mmol dmϪ3) of the zwitterionic surfactants were: SB3-14, 0.29;
SBBu3-14, 0.11; DMMAO, 0.14; DPMAO, 0.05. They were
measured by surface tension and there were no minima in
the relevant plots.1a Reactions were carried out in redistilled,
deionized water.
Kinetics
Reactions were followed at 25.0 ЊC in a Shimadzu UV-160 A or
an HP 8452 spectrophotometer by following decreasing
absorbance at 326 nm with 10Ϫ4 mol dmϪ3 MeONs, as
described.2 The slower reactions could not be followed to 10
half-lives and kobs was then calculated by a nonlinear, least-
squares fitting of the variation of absorbance with time to a
first-order rate equation. For the faster reactions values of kobs
from this method and those based on an infinity absorbance
agreed. Values of kobs over a range of [surfactant] are in Tables
1–4 and supplementary material. Addition of MeSO3H to solu-
tions of the sulfobetaines had little effect on kobs showing that
there is no reaction with OHϪ.
22 C. K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd
edn., Cornell University Press, Ithaca, New York, 1969, p. 457 ff.
23 Y. Chevalier and P. Le Perchec, J. Phys. Chem., 1990, 94, 1774.
24 (a) S. J. Bachofer and U. Simonis, Langmuir, 1996, 12, 1744; (b) P. J.
Kreke, L. J. Magid and J. C. Gee, Langmuir, 1996, 12, 699.
25 (a) P. Fromherz, Ber. Bunsenges. Phys. Chem., 1981, 85, 891; (b) J. A.
Butcher and G. W. Lamb, J. Am. Chem. Soc., 1984, 106, 1217;
(c) B. Jonsson, P.-G. Nilsson, B. Lindman, L. Guldbrand and
H. Wennerstrom, in Surfactants in Solution, ed. K. L. Mittal and
B. Lindman, Plenum Press, New York, 1984, vol. 1, p. 3.
26 Y. Chevalier, N. Kamenka, M. Chorro and R. Zana, Langmuir,
1996, 12, 3225.
Reactions in solutions of amine oxides were followed in
excess MeSO3H where protonation is quantitative.15 The elec-
trolyte concentration was varied, in the absence of surfactants,
by addition of MeSO3H, MeSO3Na and NaClO4; the hydrolysis
rate in water is almost unaffected by added salt. In 0.05–0.1 mol
dmϪ3 MeSO3H kobs = 1.33 0.01 × 10Ϫ5 sϪ1; in 0.1–1 mol dmϪ3
MeSO3Na kobs = 1.25 0.07 × 10Ϫ5 sϪ1; in NaClO4 0.1–1 mol
Ϫ3
dm
k
= 1.14 0.40 × 10Ϫ5 sϪ1.
obs
27 (a) M. da Silva Baptista, I. Cuccovia, H. Chaimovich, M. J. Politi
and W. F. Reed, J. Phys. Chem., 1992, 96, 6442; (b) C. A. Bunton,
M. M. Mhala and J. R. Moffatt, J. Phys. Chem., 1989, 93, 854.
Acknowledgements
Support of this work by Consiglio Nazionale delle Ricerche,
Rome, the Ministero dell’Università e Ricerca Scientifica e
Tecnologica, Rome and the U.S. Army Office of Research is
gratefully acknowledged.
Paper 7/05316I
Received 23rd July 1997
Accepted 25th September 1997
364
J. Chem. Soc., Perkin Trans. 2, 1998