ChemComm
Communication
T = 296(2) K, F(000) = 11700, 69 588 reflections collected, 7969 indepen-
dent reflections (Rint = 0.0947) which were used in all the calculations.
1 2
After the refinement cycles, reliability factors were R = 0.0448, wR =
0
.0788 for [I > 2s(I)], and R = 0.1513, wR = 0.0878 for all 7969 data.
1
2
1
2
J. Cˇ ejka, A. Corma and S. Zones, Zeolites and Catalysis: Synthesis,
Reactions and Applications, Wiley, Weinheim, 2010.
(a) A. Corma, Chem. Rev., 1997, 97, 2373; (b) E. R. Parnham and
R. E. Morris, Acc. Chem. Res., 2007, 40, 1005; (c) J. Yu and R. Xu, Acc.
Chem. Res., 2010, 43, 1195; (d) Z. Wang, J. Yu and R. Xu, Chem. Soc.
Rev., 2012, 41, 1729.
3
4
C. Baerlocher and L. B. McCusker, Database of Zeolite Structures:
http://www.iza-structure.org/databases/.
(a) Y.-Q. Tian, C.-X. Cai, Y. Ji, X.-Z. You, S.-M. Peng and G. H. Lee, Angew.
Chem., Int. Ed., 2002, 41, 1384; (b) Y.-Q. Tian, Z.-X. Chen, L.-H. Weng,
H.-B. Guo, S. Gao and D.-Y. Zhao, Inorg. Chem., 2004, 43, 4631;
Fig. 3 (Left, top) Normalized UV-vis absorption and PL spectra of 1 (Abs-1, Em-1) in
solid and Coumarin 6 (Abs-2, Em-2) in MeOH; (left, bottom) UV-vis spectrum of C6@1
(
0.087 wt%); (right) the emission spectra of 1 (a), C6@SiO
2
(b, 0.1 wt%), C6@1
(c, 0.087 wt%), lex = 381 nm. The inset shows the PL images under 365 nm UV light.
(c) X.-C. Huang, Y.-Y. Lin, J.-P. Zhang and X.-M. Chen, Angew. Chem.,
Int. Ed., 2006, 45, 1157; (d) H. Hayashi, A. P. Cote, H. Furukawa,
M. O’Keeffe and O. M. Yaghi, Nat. Mater., 2007, 6, 501; (e) M. H.
Alkordi, J. A. Brant, L. Wojtas, V. C. Kravtsov, A. J. Cairns and
M. Eddaoudi, J. Am. Chem. Soc., 2009, 131, 17753; ( f ) J. Zhang, T. Wu,
C. Zhou, S. Chen, P. Feng and X. Bu, Angew. Chem., Int. Ed., 2009,
4
8, 2542.
5
6
(a) M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank and M. Eddaoudi,
J. Am. Chem. Soc., 2008, 130, 12639; (b) F. Wang, Z.-S. Liu, H. Yang,
Y.-X. Tan and J. Zhang, Angew. Chem., Int. Ed., 2011, 50, 450.
(a) F. Nouar, J. Eckert, J. F. Eubank, P. Forster and M. Eddaoudi,
J. Am. Chem. Soc., 2009, 131, 2864; (b) T. Panda, P. Pachfule, Y. Chen,
J. Jiang and R. Banerjee, Chem. Commun., 2011, 47, 2011; (c) B. Chen,
S. Xiang and G. Qian, Acc. Chem. Res., 2010, 43, 1115.
Fig. 4 (Left, top) Normalized UV-vis absorption and PL spectra of 1 (Abs-1,
Em-1) in solid and Coumarin 343 (Abs-3, Em-3) in MeOH; (left, bottom) UV-vis
spectrum of C343@1 (0.072 wt%); (right) the emission spectra of 1 (a),
7 (a) J.-R. Li, Y. Tao, Q. Yu, X.-H. Bu, H. Sakamoto and S. Kitagawa,
Chem.–Eur. J., 2008, 14, 2771; (b) A. Huang and J. Caro, Angew. Chem.,
Int. Ed., 2011, 50, 4979; (c) K. Li, D. H. Olson, J. Seidel, T. J. Emge,
H. Gong, H. Zeng and J. Li, J. Am. Chem. Soc., 2009, 131, 10368.
2
C343@SiO (d, 0.1 wt%), C343@1 (e, 0.072 wt%,), lex = 381 nm. The inset
8
(a) D. J. L. Tranchemontagne, Z. Ni, M. O’Keeffe and O. M. Yaghi,
Angew. Chem., Int. Ed., 2008, 47, 5136; (b) D. J. Tranchemontagne,
J. L. Mendoza-Cort ´e s, M. O’Keeffe and O. M. Yaghi, Chem. Soc. Rev.,
shows the PL images under 365 nm UV light.
2
009, 38, 1257.
the spatial confined dyes decreases the quenching within the dyes
9
Y. Kang, F. Wang, J. Zhang and X. Bu, J. Am. Chem. Soc., 2012, 134, 17881.
18
during the energy transfer process. The synthesis of different 10 A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe
and O. M. Yaghi, Acc. Chem. Res., 2010, 43, 58.
amounts of C6@1 and C343@1 has been achieved by immersing
1
1
1
1 (a) Y. Liu, V. C. Kravtsov and M. Eddaoudi, Angew. Chem., Int. Ed.,
2
1
in the methanol with different concentrations of dyes for about
008, 47, 8446; (b) T. Wu, X. Bu, R. Liu, Z. Lin, J. Zhang and P. Feng,
24 h (Fig. S12, ESI†). From the descending peak of 1 accompanied
Chem.–Eur. J., 2008, 14, 7771; (c) T. Wu, J. Zhang, C. Zhou, L. Wang,
X. Bu and P. Feng, J. Am. Chem. Soc., 2009, 131, 6111.
2 (a) S.-T. Zheng, F. Zuo, T. Wu, B. Irfanoglu, C. Chou, R. A. Nieto,
P. Feng and X. Bu, Angew. Chem., Int. Ed., 2011, 50, 1849;
(b) S.-T. Zheng, T. Wu, F. Zuo, C. Chou, P. Feng and X. Bu, J. Am.
Chem. Soc., 2012, 134, 1934.
with the ascending peaks of different amounts of dyes, further
evidence for the energy transfer process could be obtained, which
could be proved by the time-resolved fluorescence decay curves of 1,
C6@1 and C343@1 (Fig. S13, ESI†).
3 (a) B. Zheng, Z. Liang, G. Li, Q. Huo and Y. Liu, Cryst. Growth Des.,
2
In conclusion, we have designed and synthesized a SOD-type
010, 10, 3405; (b) J. Xu, L. Sun, H. Xing, Z. Liang, J. Yu and R. Xu,
ZMOF (Et
2
NH
2
)[In(BCBAIP)]ꢀ4DEFꢀ4EtOH through the 4 + 4 syn-
Inorg. Chem. Commun., 2011, 14, 978; (c) L. Sun, Y. Li, Z. Liang, J. Yu
and R. Xu, Dalton Trans., 2012, 41, 12790; (d) L. Sun, H. Xing,
Z. Liang, J. Yu and R. Xu, Dalton Trans., 2013, 42, 5508.
4 (a) S. Huh, T.-H. Kwon, N. Park, S.-J. Kim and Y. Kim, Chem.
Commun., 2009, 4953; (b) Z.-J. Lin, T.-F. Liu, Y.-B. Huang, J. Lu¨
and R. Cao, Chem.–Eur. J., 2012, 18, 7896.
thetic strategy by cross-linking the designed four-connected tetra-
carboxylate ligand H BCBAIP with the four-connected In ion. This
4
compound possesses an anionic framework and a nano-sized
sodalite cage, which enable it to adsorb dyes, especially cationic
dyes. Importantly, C6 and C343 loaded compound 1 exhibits
3+
1
1
5 (a) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; (b) A. L. Spek, Acta
Crystallogr., Sect. D, 2009, 65, 148.
efficient light-harvesting properties. The effective 4 + 4 strategy for 16 (a) R. Gruenker, V. Bon, A. Heerwig, N. Klein, P. Mueller, U. Stoeck,
I. A. Baburin, U. Mueller, I. Senkovska and S. Kaskel, Chem.–Eur. J.,
the construction of ZMOFs by using a novel tetracarboxylate ligand
with tetrahedral configuration and four-connected metal ions would
expand the versatility and utility of the ZMOFs.
We thank the National Natural Science Foundation of China and
the State Basic Research Project of China (Grant: 2011CB808703) for
support of this work. H.X. thanks the Jilin Provincial Science and
Technology Development Foundation (201101007).
2012, 18, 13299; (b) G.-Q. Kong, S. Ou, C. Zou and C.-D. Wu, J. Am.
Chem. Soc., 2012, 134, 19851; (c) G. Nickerl, A. Notzon, M. Heitbaum,
I. Senkovska, F. Glorius and S. Kaskel, Cryst. Growth Des., 2012,
13, 198; (d) J. Yu, Y. Cui, C. Wu, Y. Yang, Z. Wang, M. O’Keeffe,
B. Chen and G. Qian, Angew. Chem., Int. Ed., 2012, 51, 10542;
(
e) Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev., 2012, 112, 1126.
1
7 (a) X. Zhang, M. A. Ballem, M. Ahren, A. Suska, P. Bergman and
K. Uvdal, J. Am. Chem. Soc., 2010, 132, 10391; (b) C. A. Kent, D. Liu,
L. Ma, J. M. Papanikolas, T. J. Meyer and W. Lin, J. Am. Chem. Soc.,
2011, 133, 12940; (c) C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant,
S. T. Nguyen and J. T. Hupp, J. Am. Chem. Soc., 2011, 133, 15858;
(d) S. Jin, H.-J. Son, O. K. Farha, G. P. Wiederrecht and J. T. Hupp,
J. Am. Chem. Soc., 2013, 135, 955.
Notes and references
‡
Crystal data for 1: C56
95 6
H N O16In, M = 1223.20, trigonal, space group
R3%c, a = 38.2369(10) Å, b = 38.2369(10) Å, c = 22.7356(12) Å,
3
ꢁ3
ꢁ1
V = 28787.4(19) Å , Z = 18, D
c
= 1.270 g cm , m = 0.436 mm
,
18 X. Zhang, Z.-K. Chen and K. P. Loh, J. Am. Chem. Soc., 2009, 131, 7210.
This journal is c The Royal Society of Chemistry 2013
Chem. Commun.