M. Chakrabarty, S. Sarkar / Tetrahedron Letters 43 (2002) 1351–1353
1353
To our knowledge, this is the first report of the forma-
tion of both symmetrical and unsymmetrical triindolyl-
alkanes by tandem addition–elimination-(Michael)
addition reaction of indoles, and that too on a clay
surface. This reaction should be typical of the indole
ring, provided the nucleophilicity of the latter is not
destroyed by, for example, N-acylation/aroylation. Our
findings are significant in view of the recent identifica-
11. When two mol equiv. of indole was used, the reaction
was very sluggish and did not go to completion. Three
mol equiv. of indole or alkylindole was, therefore, used
in all the experiments.
12. Bahner, C. T.; Kinder, H.; Gutman, L. J. Med. Chem.
1965, 8, 397.
13. In a typical experiment, a solution of 1 (0.6 mmol) in
EtOAc:MeOH (1:1; 0.5 ml) was mixed with a solution of
2c (1.8 mmol) in EtOAc (0.5 ml) and adsorbed on M.
K10 clay (5 g), and the solvent was allowed to evaporate
off at room temperature. After 5 min of mixing, leaching
17
tion of a bacterial metabolite as a triindolylalkane, the
conversion of derivatised triarylalkanes into important
1
8
cage compounds and the physicochemical studies of
19
several triarylalkyl cations. Additionally, the present
work opens up the possibility of the development of a
new, general synthesis of symmetrical TIMs without the
use of any protic or Lewis acid. This lead is at present
being explored by us.
with CH Cl2 (3×15 ml), removal of the solvent and
2
preparative TLC of the resulting residue in petrol–EtOAc
(
4:1) furnished 3c, 2a (28%), 4c and 5c which, along with
products from other reactions, were crystallised from
petroleum ether (bp 60–80°C)–CH Cl and identified by
2
2
correct elemental analyses, IR (KBr), (LR/HR)EI MS,
1
13
H (500 MHz) and C (125 MHz) NMR (CDCl ), DEPT
3
1
35, HMQC and HMBC spectra.
Acknowledgements
1
4. 3c: 24 mg (9%); orange needles, mp 216–218°C; IR: 1440,
−
1
+
1360, 740 cm ; HRMS: m/z 445.2501 (C H N ; M ;
31 31 3
1
1
00%); H: l 1.35 (9H, t, J 7.2 Hz, N-CH CH ), 4.05
The authors sincerely thank the Director, Bose Institute
for providing laboratory facilities and an Institute fel-
lowship to S.S., Professor D. E. Games, University of
Wales, Swansea, UK and Mr. B. Majumdar, NMR
Laboratory, Bose Institute for recording the mass and
NMR spectra.
2
3
(
6H, q, J 7.2 Hz, N-CH CH ), 6.15 (1H, s, Ar CH), 6.70
2 3 3
(3H, s, H-2), 6.96 (3H, t, J 7.2 Hz, H-5), 7.16 (3H, t, J 7.2
Hz, H-6), 7.31 (3H, d, J 8 Hz, H-7), 7.47 (3H, d, J 8 Hz,
13
H-4); C: l 136.8, 128.2, 118.5 (all C), 126.8, 121.3,
120.8, 118.6, 118.5, 109.4, 31.6 (all CH), 41.1 (CH ), 15.9
CH3).
5. 4c: 58 mg (23%); red prisms, mp 222–224°C; IR: 3406
2
(
1
−
1
+
(
NH), 1459, 1348, 740 cm ; MS: m/z 417 (M ; 100%);
H: l 1.35 (6H, t, J 7.2 Hz, N-CH CH ), 4.05 (4H, q, J
References
1
2
3
7
.2 Hz, N-CH CH ), 6.15 (1H, s, Ar CH), 6.70 (2H, s,
2 3 3
1
2
. Bram, G.; Loupy, A. In Preparative Chemistry Using
Supported Reagents; Laszlo, P., Ed.; Academic Press: San
Diego, 1987; p. 387.
. (a) Bram, G.; Loupy, A.; Villemin, D. In Solid Supports
and Catalysts in Organic Synthesis; Smith, K., Ed.; Ellis
Horwood, PTR Prentice Hall: Chichester, 1992; p. 302;
H-2), 6.77 (1H, d, J 1 Hz, H-2), 6.97 (2H, t, J 7.5 Hz,
H-5), 7.0 (1H, t, J 7.5 Hz, H-5), 7.16 (1H, t, J 7.5 Hz,
H-6), 7.17 (2H, t, J 7.5 Hz, H-6), 7.32 (2H, d, J 8.2 Hz,
H-7), 7.35 (1H, d, J 8.2 Hz, H-7), 7.48 (2H, d, J 7.8 Hz,
H-4), 7.50 (1H, d, J 7.8 Hz, H-4), 7.85 (1H, br s, NH);
1
3
C: l 137.1, 136.8, 128.1, 127.6, 120.2, 118.3 (all C),
26.8, 123.7, 122.0, 121.4, 120.7, 120.5, 119.3, 118.7,
11.3, 109.5, 31.6 (all CH), 41.1 (CH ), 15.9 (CH ).
(b) Clark, J. H. Catalysis of Organic Reactions by Sup-
1
1
ported Inorganic Reagents; VCH: Weinheim, 1994; (c)
Basiuk, V. A. Russ. Chem. Rev. 1995, 64, 1003.
. Kabalka, G. W.; Pagni, R. M. Tetrahedron 1997, 53,
7
2
3
1
6. 5c: 21 mg (9%); orange needles, mp 204–208°C; IR: 3400
3
4
5
−
1
+
1
(
1
NH), 1458, 748 cm ; MS: m/z 389 (M ; 100%); H: l
.34 (3H, t, J 7 Hz, N-CH CH ), 4.04 (2H, q, J 7 Hz,
999.
. Sen, S. E.; Smith, S. M.; Sullivan, K. A. Tetrahedron
999, 55, 12657.
. (a) Delaude, L.; Laszlo, P.; Smith, K. Acc. Chem. Res.
2
3
N-CH CH ), 6.15 (1H, s, Ar CH), 6.70 (1H, s, H-2), 6.77
2
3
3
1
(
2H, s, H-2), 6.97 (1H, t, J 7 Hz, H-5), 6.99 (2H, t, J 7
Hz, H-5), 7.15 (2H, t, J 7 Hz, H-6), 7.16 (1H, t, J 7 Hz,
H-6), 7.31 (1H, d, J 8 Hz, H-7), 7.35 (2H, d, J 8 Hz,
H-7), 7.48 (1H, d, J 8 Hz, H-4), 7.49 (2H, d, J 8 Hz,
1
993, 26, 607; (b) Corelis, A.; Laszlo, P. Synlett 1994,
1
55.
6. Fruechtel, J. S.; Jung, G. Angew. Chem., Int. Ed. Engl.
996, 35, 17.
13
H-4), 7.88 (2H, s, NH); C: l 137.1, 127.6, 120.0, 118.7
all C), 126.7, 123.7, 122.0, 121.4, 120.6, 120.5, 119.4,
11.3, 109.5, 31.6 (all CH), 41.1 (CH ), 15.9 (CH ).
1
(
1
7
. (a) Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.;
Jacquault, P.; Mathe, D. Synthesis 1998, 1213; (b)
Varma, R. S. Green Chem. 1999, 43.
2
3
1
7. Garbe, T. R.; Kobayashi, M.; Shimizu, M.; Takesue, N.;
Ozawa, M.; Yukawa, H. J. Nat. Prod. 2000, 63, 596.
8. Kurata, H.; Nakamini, H.; Matsumoto, K.; Kawase, T.;
Oda, M. Chem. Commun. 2001, 529.
8
9
. Laszlo, P. Science 1987, 235, 1473.
. Tanabe, K. Solid Acids and Bases, Their Catalytic Prop-
erties; Academic Press: New York, 1970.
1
1
0. Chakrabarty, M.; Basak, R.; Ghosh, N. Tetrahedron
19. Naya, S.-i.; Nitta, M. J. Chem. Soc., Perkin Trans. 2
2001, 275.
Lett. 2001, 42, 3913.