400
CHAIKOVSKAYA et al.
(Scientific-Educational Center, Tomsk State University,
Tomsk, Russia) for the assistance in the chromato-
graphy-mass spectrometry analysis of photolysis
products of herbicides.
REFERENCES
1. Saratovskikh, E.A., Kozlova, N.B., Papin, V.G., and
Shtamm, E.V., Prikl. Biokhim. Mikrobiolog., 2006,
vol. 42, p. 44.
10
0
2. Ermakov, V.V., Gazokhromatograficheskie metody
opredeleniya pestitsidov v biologicheskikh ob’ektakh
(Gas Chromatographic Determination of Pesticides in
Biological Objects), Moscow: Nauka, 1972.
Fig. 5. Fluorescence spectra of MCPA aqueous solution
(c = 10–3 M) (1) before and (2) after exposure to UV
radiation of a XeBr* excilamp at different fluorescence
excitation wavelengths. λ (nm): (1) 280 and 300, (2) 260,
(3) 330, (4) 350, and (5) 330.
3. Unifitsirovannye metody opredeleniya fonovogo
zagryazneniya prirodnoi sredy (Standardized Methods
of Monitoring of Background Contamination of Natural
Environment), Rovinskii, F.Ya, Ed., Moscow: Gidro-
meteoizdat, 1986.
4. Lunev, M.I., Pestitsidy i okhrana agrofitotsenozov
(Pesticides and Protection of Agrophytocenoses), Moscow:
Kolos, 1992.
formation of 2-methyl-4,6-dichlorophenol in the
course of irradiation at this wavelength.
5. Fedorova, L.M., and Belova, R.S., Proizvodnye
khlorfenoksiuksusnykh kislot i okhrana okruzhayushchei
sredy (Derivatives of Chlorophenoxyacetic Acids and
Protection of the Environment), Saratov: Sar. Gos.
Univ., 1983.
CONCLUSIONS
(1) It was found that the degradation of herbicides
(2,4-dichlorophenoxyacetic and 2-methyl4-chlorophe-
noxyacetic acids) is the most efficient in the case of
KrCl* and XeBr* excilamps, in contrast to the use of
and XeCl lamps are used.
6. Sodell, J.A., and Seviour, R., J. Appl. Bacteriol., 1990,
vol. 69, p. 145.
7. Quan, X., Chen, S., Jing, S., et al., Separ. Purif.
Technol., 2004, vol. 34, p. 73.
(2) The compositions of the photoproducts formed
after the KrCl* and XeBr* excilamp irradiation are
different. The main photolysis products of 2-methyl-4-
chlorophenoxyacetic acid exposed to a XeBr* excilamp
radiation are 2-methyl-4-chlorophenol, 2-methyl-
phenol, 2-methylhydroquinone, 2-methyl-p-benzoqui-
none, 2-methyl-4,6-dichlorophenol, and ethoxyben-
zene; those formed upon the exposure to a KrCl* exci-
lamp radiation are 2-mehylphenol, 2-methylresorcinol,
2-methyl-4-benzoquinone, and 2-methylhydroquinone.
The conversion products of 2,4-dichlorophenoxyacetic
acid exposed to a KrCl* excilamp radiation is 2,4-
dichlorophenol. The degradation products of 2,4-
dichlorophenoxyacetic acid exposed to irradiation by a
XeBr* excilamp were not found.
8. Piera, E., Calpe, J., Brillas, E., et al., Appl. Catal. B.
Environmental, 2000, vol. 27, p. 169.
9. Lagana, A., Bacaloni, A., De Leva, I., et al., Analyt.
Chim. Acta, 2002, vol. 462, p. 187.
10. Chinalia, F.A., and Killham, K.S., Chemosphere, 2006,
vol. 64, p. 1675.
11. Aksu, Z., and Kabasakal, E., Separ. Purif. Technol.,
2004, vol. 35, p. 223.
12. Dignac, M.-F., Ginestet, P., Rybacki, D., et al., Water
Res., 2000, vol. 34, no. 17, p. 4185.
13. Kundu, S., Pal, A., and Dikshit, A., Separ. Purif.
Technol., 2005, vol. 44, p. 121.
14. Erofeev, M.V., Sosnin, E.A., Tarasenko, V.F., and
Shits, D.V., Opt. Atmos. Okeana, 2000, vol. 13, no. 9,
p. 862.
ACKNOWLEDGMENTS
15. Sosnin, E.A., Erofeev, M.V., Tarasenko, V.F., and
Shits, D.V., Pribory Tekh. Eksp., 2002, no. 6, p. 1.
The study was financially supported by the
Russian Foundation for Basic Research (project 06-08-
01380-а). The authors are grateful to Dr. L.G. Narozhnaya
16. Sosnin, E.A., Erofeev, M.V., Lisenko, A.A., et al.,
Optich. Zh., 2002, vol. 69, no. 7, p. 77.
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 82 No. 3 2009