Inorganic Chemistry
Article
(
11) Crabtree, R. H. Introduction to Selective Functionalization of
C−H Bonds. Chem. Rev. 2010, 110 (2), 575−575.
12) Tan, Q.; Wang, G.; Long, A.; Dinse, A.; Buda, C.; Shabaker, J.;
(32) Okamoto, K.; Miyawaki, J.; Nagai, K.; Matsumura, D.; Nojima,
A.; Yokoyama, T.; Kondoh, H.; Ohta, T. Structural Study on Highly
Oxidized States of a Water Oxidation Complex [RuIII(bpy)2(H2O)]-
2(μ-O)4+ by Ruthenium K-Edge X-ray Absorption Fine Structure
Spectroscopy. Inorg. Chem. 2003, 42 (26), 8682−8689.
(
Resasco, D. E. Mechanistic analysis of the role of metal oxophilicity in
the hydrodeoxygenation of anisole. J. Catal. 2017, 347, 102−115.
(
13) Tyrlik, S. K.; Kurzak, K.; Randzio, S. L. Reactions of
(33) Okamoto, K.; Takahashi, T.; Kohdate, K.; Kondoh, H.;
Yokoyama, T.; Ohta, T. Characterization of the ruthenium−
dinitrogen tetraamine complexes by XAFS spectroscopy. J. Synchro-
tron Radiat. 2001, 8 (2), 689−691.
commercial ruthenium chlorides with O-donor ligands. Reactions
with water: u.v.-vis. investigation of soluble products; analysis,
thermogravimetry and an i.r. study of precipitated solids. Transition
Met. Chem. 1995, 20 (4), 330−337.
(34) Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P. Assignment of
(
14) Nunes, G. S.; Alexiou, A. D. P.; Toma, H. E. Catalytic oxidation
pre-edge features in the Ru K-edge X-ray absorption spectra of
organometallic ruthenium complexes. Inorg. Chim. Acta 2008, 361
of hydrocarbons by trinuclear μ-oxo-bridged ruthenium-acetate
clusters: Radical versus non-radical mechanisms. J. Catal. 2008, 260
1), 188−192.
(
Characterization and Catalytic Activity of Ruthenium-Containing
Mesoporous Molecular Sieves. Catal. Lett. 2009, 132 (3), 450.
(
Highly Selective Cycloalkane Oxidation in Water with Ruthenium
Nanoparticles. ChemCatChem 2016, 8 (2), 357−362.
(
(
4), 1059−1065.
35) Frenkel, A. Solving the 3D structure of metal nanoparticles. Z.
Kristallogr. - Cryst. Mater. 2007, 222, 605.
36) Marinkovic, N. S.; Sasaki, K.; Adzic, R. R. Nanoparticle size
(
(
15) Luo, X.; Wang, Z.; Chen, L.; Wang, X.; Wu, B. Facile Synthesis,
(
evaluation of catalysts by EXAFS: Advantages and limitations. Zast.
Mater. 2016, 57, 101−109.
16) Denicourt-Nowicki, A.; Lebedeva, A.; Bellini, C.; Roucoux, A.
(37) Jurss, J. W.; Concepcion, J. J.; Butler, J. M.; Omberg, K. M.;
Baraldo, L. M.; Thompson, D. G.; Lebeau, E. L.; Hornstein, B.;
Schoonover, J. R.; Jude, H.; Thompson, J. D.; Dattelbaum, D. M.;
Rocha, R. C.; Templeton, J. L.; Meyer, T. J. Electronic Structure of
the Water Oxidation Catalyst cis,cis-[(bpy)2(H2O)RuIIIORuIII-
17) Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the
Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107 (6),
411−2502.
18) Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.;
2
(
(
1
OH2)(bpy)2]4+, The Blue Dimer. Inorg. Chem. 2012, 51 (3),
345−1358.
38) Murahashi, S.-I.; Zhang, D. Ruthenium catalyzed biomimetic
Abou-Shehada, S.; Dunn, P. J. CHEM21 selection guide of classical-
and less classical-solvents. Green Chem. 2016, 18, 288−296.
(
(
oxidation in organic synthesis inspired by cytochrome P-450. Chem.
Soc. Rev. 2008, 37 (8), 1490−1501.
19) Acharyya, S. S.; Ghosh, S.; Adak, S.; Tripathi, D.; Bal, R.
Fabrication of CuCr2O4 spinel nanoparticles: A potential catalyst for
the selective oxidation of cycloalkanes via activation of Csp3−H bond.
Catal. Commun. 2015, 59, 145−150.
(
39) Tong, L.; Thummel, R. P. Mononuclear ruthenium
polypyridine complexes that catalyze water oxidation. Chem. Sci.
016, 7 (11), 6591−6603.
40) Hurst, J. K. Water oxidation catalyzed by dimeric μ-oxo bridged
ruthenium diimine complexes. Coord. Chem. Rev. 2005, 249 (3), 313−
28.
41) Binstead, R. A.; Chronister, C. W.; Ni, J.; Hartshorn, C. M.;
Meyer, T. J. Mechanism of Water Oxidation by the μ-Oxo Dimer
(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+. J. Am. Chem. Soc.
000, 122 (35), 8464−8473.
42) Hermans, I.; Nguyen, T. L.; Jacobs, P. A.; Peeters, J.
2
(
(
20) Pillai, U. R.; Sahle-Demessie, E. Vanadium phosphorus oxide as
an efficient catalyst for hydrocarbon oxidations using hydrogen
peroxide. New J. Chem. 2003, 27 (3), 525−528.
(
3
(
21) Yalkowsky, S. H.; He, Y.; Jain, P. Handbook of Aqueous
Solubility Data. CRC Press: Boca Raton, 2010.
22) Anantharaj, S.; Jayachandran, M.; Kundu, S. Unprotected and
(
[
2
(
interconnected Ru0 nano-chain networks: advantages of unprotected
surfaces in catalysis and electrocatalysis. Chem. Sci. 2016, 7 (5),
3
(
188−3205.
Autoxidation of Cyclohexane: Conventional Views Challenged by
23) Li, Y.; Huang, Y. Low-temperature, seed-mediated synthesis of
Theory and Experiment. ChemPhysChem 2005, 6 (4), 637−645.
monodispersed hyperbranched PtRu nanoparticles and their electro-
catalytic activity in methanol oxidation. J. Mater. Chem. 2012, 22 (25),
(43) Hermans, I.; Jacobs, P. A.; Peeters, J. Understanding the
autoxidation of hydrocarbons at the molecular level and consequences
1
(
2461−12464.
for catalysis. J. Mol. Catal. A: Chem. 2006, 251 (1), 221−228.
24) de Oliveira, J. F. A.; Cardoso, M. B. Partial Aggregation of
(44) Hermans, I.; Jacobs, P. A.; Peeters, J. To the Core of
Silver Nanoparticles Induced by Capping and Reducing Agents
Competition. Langmuir 2014, 30 (17), 4879−4886.
(
ruthenium materials. Surf. Interface Anal. 2015, 47 (11), 1072−1079.
(
Ruthenium(III) chloride in aqueous solution: electrochemical and
Autocatalysis in Cyclohexane Autoxidation. Chem. - Eur. J. 2006, 12
16), 4229−4240.
45) Roecker, L.; Meyer, T. J. Hydride transfer in the oxidation of
alcohols by [(bpy)2(py)Ru(Q)]2+. A kH/kD kinetic isotope effect of
0. J. Am. Chem. Soc. 1987, 109 (3), 746−754.
46) Concepcion, J. J.; Jurss, J. W.; Norris, M. R.; Chen, Z.;
(
25) Morgan, D. J. Resolving ruthenium: XPS studies of common
(
26) Taqui Khan, M. M.; Ramachandraiah, G.; Rao, A. P.
5
(
spectral studies. Inorg. Chem. 1986, 25 (5), 665−670.
(
Templeton, J. L.; Meyer, T. J. Catalytic Water Oxidation by Single-
27) Nowicki, A.; Le Boulaire, V.; Roucoux, A. Nanoheterogeneous
Site Ruthenium Catalysts. Inorg. Chem. 2010, 49 (4), 1277−1279.
Catalytic Hydrogenation of Arenes: Evaluation of the Surfactant
Stabilized Aqueous Ruthenium(0) Colloidal Suspension. Adv. Synth.
Catal. 2007, 349 (14-15), 2326−2330.
(47) Zong, R.; Thummel, R. P. A New Family of Ru Complexes for
Water Oxidation. J. Am. Chem. Soc. 2005, 127 (37), 12802−12803.
(48) Ortiz, N.; Hammons, J. A.; Cheong, S.; Skrabalak, S. E.
(
28) Pantani, F. The behaviour of ruthenium trichloride in aqueous
Monitoring Ligand Mediated Growth and Aggregation of Metal
Nanoparticles and Nanodendrites by In Situ Synchrotron Scattering
Techniques. ChemNanoMat 2015, 1 (2), 109−114.
solutions. J. Less-Common Met. 1962, 4 (2), 116−123.
(
B. N.; Chuvilin, A. L.; Likholobov, V. A. Investigation of the
formation process of nanosized particles of Ru(III). J. Struct. Chem.
29) Troitskii, S. Y.; Fedotov, M. A.; Kochubei, D. I.; Novgorodov,
(49) Martínez-Prieto, L. M.; Rakers, L.; Lopez-Vinasco, A. M.; Cano,
́
I.; Coppel, Y.; Philippot, K.; Glorius, F.; Chaudret, B.; van Leeuwen,
P. W. N. M. Soluble Platinum Nanoparticles Ligated by Long-Chain
N-Heterocyclic Carbenes as Catalysts. Chem. - Eur. J. 2017, 23 (52),
12779−12786.
2
(
007, 48 (1), 144−149.
30) Khan, M. M. T.; Ramachandraiah, G.; Shukla, R. S.
Ruthenium(III) chloride in aqueous solution: kinetics of the aquation
and anation reactions of the chloro complexes. Inorg. Chem. 1988, 27
(50) Tristany, M.; Chaudret, B.; Dieudonne,
P.; Matsura, V.; Moreno-Manas, M.; Philippot, K.; Pleixats, R.
́
P.; Guari, Y.; Lecante,
(
19), 3274−3278.
31) Ishizuka, T.; Kotani, H.; Kojima, T. Characteristics and
reactivity of ruthenium−oxo complexes. Dalton Trans. 2016, 45 (42),
6727−16750.
̃
(
Synthesis of Ruthenium Nanoparticles Stabilized by Heavily
Fluorinated Compounds. Adv. Funct. Mater. 2006, 16 (15), 2008−
2015.
1
J
Inorg. Chem. XXXX, XXX, XXX−XXX