JOURNAL OF
POLYMER SCIENCE
ORGINAL ARTICLE
WWW.POLYMERCHEMISTRY.ORG
H. Sakai, S. Shinto, J. Kumar, Y. Arak, T. Sakanoue, T.
Takenobu, T. Wada, T. Kawai, T. Hasobe, J. Phys. Chem. C
2015, 119, 13937; (d) D. Q. He, H. Y. Lu, M. Li, C. F. Chen,
Chem. Commun. 2017, 53, 6093; (e) L. Fang, M. Li, W.B. Lin, Y.
Shen, C.F. Chen, J. Org. Chem. 2017, 82, 7402.
CPL emission signal could be detected for either P1 or P2 in
the absence of Zn21 and lower molar ratios at 1:0.1 or 1:0.2
due to very weak fluorescence emission. But we found
that the strong CPL emission with clear mirror image can be
detected as the increase of Zn21 molar ratio up to 1:0.3, and
CPL emission wavelengths at about 465 nm are similar with
that of their fluorescence. We assume that the CPL response
behavior of chiral BINOL-based polymers can be ampified by
fluorescence enhancement effect of Salen-Zn(II) coordination
reaction. The glum can reach as high as 8.5 3 1023 for P1
and 8.0 3 1023 for P2. No obvious glum enhancement can be
observed as the increase in Zn21 molar ratio from 0.3 to 4.0
equiv as shown in Figure 4(a,b). Meanwhile, we also found
that CPL emission signal almost disappears upon the addi-
tion of EDTA due to the degradation of Salen-Zn(II) complex
unit and fluorescence quenching. This research work could
provide a strategy to develop a higher glum value of CPL-
active polymer materials by metal-coordination fluorescence
enhancement.
4 (a) Y. Kawagoe, M. Fujiki, Y. Nakanoa, New J. Chem. 2010,
34, 637; (b) S. T. Duonga, M. Fujiki, Polym. Chem. 2017, 8,
4673; (c) Y. J. Jin, K. U. Seo, Y. G. Choi, M. Teraguchi, T. Aoki,
G. Kwak, Macromolecules 2017, 50, 6433; (d) Y. Wang, Y. Li, S.
Liu, F. Li, C. Zhu, S. Li, Y. Cheng, Macromolecules 2016, 49,
5444; (e) C. Zhang, M. Li, H. Y. Lu, C. F. Chen, RSC Adv. 2018,
8, 1014; (f) A. Satrijo, S. C. J. Meskers, T. M. Swager, J. Am.
Chem. Soc. 2006, 128, 9030.
5 (a) T. Ikeda, M. Takayama, J. Kumar, T. Kawai, T. Haino, Dal-
ton Trans. 2015, 44, 13156; (b) T. Harada, Y. Nakano, M. Fujiki,
M. Naito, T. Kawai, Y. Hasegawa, Inorg. Chem. 2009, 48, 11242;
(c) R. Carr, N. H. Evansa, D. Parkera, Chem. Soc. Rev. 2012, 41,
7673.
6 (a) H. Jintoku, M. T. Kao, A. D. Guerzo, Y. Yoshigashima, T.
Masunaga, M. Takafujiac, H. Ihara, J. Mater. Chem. C 2015, 3,
5970; (b) Z. Shen, T. Wang, L. Shi, Z. Tang, M. Liu, Chem. Sci.
2015, 6, 4267; (c) R. B. Alnoman, S. Rihn, D. C. O’Connor, F. A.
Black, B. Costello, P. G. Waddell, W. Clegg, R. D. Peacock, W.
Herrebout, J. G. Knight, M. J. Hall, Chem. Eur. J. 2016, 22, 93;
(d) F. Salerno, J. A. Berrocal, A. T. Haedler, F. Zinna, E. W.
Meijer, L. D. Bari, J. Mater. Chem. C 2017, 5, 3609; (e) D.
Venkatakrishnarao, C. Sahoo, E. A. Mamonov, V. B. Novikov,
Nikolai V. Mitetelo, S. Ram, G. Naraharisetty, T. V. Murzina, R.
Chandrasekar, J. Mater. Chem. C 2017, 5, 12349; (f) D. Yang, P.
Duan, L. Zhang, M. Liu, Nat. Commun., DOI: 10.1038/
CONCLUSIONS
Two chiral BINOL-based polymer enantiomers incorporating
Salen moiety in the main chain backbone can exhibit “off-on”
CPL response signals only in the present of Zn21 ion, which
can be attributed to the fluorescence enhancement effect of
Salen-Zn(II) coordination reaction and the effective chiral
transfer from the binaphthyl moiety to Salen-Zn(II) complex.
This work can provide a new design strategy on the ampli-
fied CPL materials promoted by metal-coordination chiral
complexes.
7 (a) B. A. S. Jose, J. Yan, K. Akagi, Angew. Chem. 2014, 126,
10817; (b) J. Park, T. Yu, T. Inagaki, K. Akagi, Macromolecules
2015, 48, 1930; (c) J. Fan, Y. Li, H. K. Bisoyi, R. S. Zola, D.
Yang, T. J. Bunning, D. A. Weitz, Quan Li, Angew. Chem. Int.
Ed. 2015, 54, 2160; (d) A. Bobrovsky, K. Mochalov, V. Oleinikov,
A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev, I.
Nabiev, Adv. Mater. 2012, 24, 6216.
ACKNOWLEDGMENTS
8 (a) J. F. Cui, M. Ko, K. P. Shing, J. R. Deng, N. C. H. Lai, M.
K. Wong, Angew. Chem. Int. Ed. 2017, 56, 3074; (b) G. Mirri, S.
D. Bull, P. N. Horton, T. D. James, L. Male, J. H. R. Tucker, J.
Am. Chem. Soc. 2010, 132, 8903; (c) A. P. Smalley, J. D.
Cuthbertson, M. J. Gaunt, J. Am. Chem. Soc. 2017, 139, 1412;
(d) J. H. Tay, A. J. Arguelles, P. Nagorny, Org. Lett. 2015, 17,
3774; (e) Z. B. Li, L. Pu, Org. Lett. 2004, 6, 1065.
This work was supported by the National Natural Science Foun-
dation of China (21474048, 21674046, and 51673093).
REFERENCES AND NOTES
1 (a) A. Montali, C. Bastiaansen, P. Smith, C. Weder, Nature
1998, 392, 261; (b) Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, Y.
Iwasa, Science 2014, 344, 725; (c) B. A. S. Jose, S. Matsushita,
K. Akagi, J. Am. Chem. Soc. 2012, 134, 19795; (d) M. Li, H. Y.
Lu, C. Zhang, L. Shi, Z. Y. Tang, C. F. Chen, Chem. Commun.
2016, 52, 9921.
ꢀ
9 (a) E. M. Sanchez-Carnerero, F. Moreno, B. L. Maroto, A. R.
Agarrabeitia, M. J. Ortiz, B. G. Vo, G. Muller, S. de la Moya, J.
Am. Chem. Soc. 2014, 136, 3346; (b) R. Aoki, R. Toyoda, J. F.
Ko€gel, R. Sakamoto, J. Kumar, Y. Kitagawa, K. Harano, T.
Kawai, H. Nishihara, J. Am. Chem. Soc. 2017, 139, 16024; (c) S.
Feuillastre, M. Pauton, L. Gao, A. Desmarchelier, A. J. Riives,
D. Prim, D. Tondelie, B. Geffroy, G. Muller, G. Clavier, J. Am.
Chem. Soc. 2016, 138, 3990; (d) S. Nakanishi, N. Hara, N.
Kuroda, N. Tajima, M. Fujiki, Y. Imai, Org. Biomol. Chem. 2018,
16, 1093; (e) M. S. Sundar, H. R. Talele, H. M. Mande, A. V.
Bedekar, R. C. Tovar, G. Muller, Tetrahedron Lett. 2014, 55,
1760; (f) F. Song, Z. Xu, Q. Zhang, Z. Zhao, H. Zhang, W. Zhao,
Z. Qiu, C. Qi, H. Zhang, H. H. Y. Sung, I. D. Williams, J. W. Y.
Lam, Z. Zhao, A. Qin, D. Ma, B. Z. Tang, Adv. Funct. Mater.
2 (a) W. Li, D. Huang, J. Wang, W. Shen, L. Chen, S. Yang, M.
Zhu, B. Tang, G. Liang, Z. Xu, Polym. Chem. 2015, 6, 8194; (b)
F. Guo, W. Gai, Y. Hong, B. Tang, J. Qin, Y. Tang, Chem. Com-
ꢀ
mun. 2015, 51, 17257; (c) E. M. Sanchez-Carnerero, L. Gartzia-
Rivero, F. Moreno, B. L. Maroto, A. R. Agarrabeitia, M. J. Ortiz,
~
ꢀ
J. Banuelos, I. Lopez-Arbeloa, S. de la Moya, Chem. Commun.
2014, 50, 12765; (d) G. D. Sampedro, E. Palao, A. R.
Agarrabeitia, S. de la Moya, N. Boens, M. J. Ortiz, RSC Adv.
2014, 4, 19210; (e) B. He, H. Nie, L. Chen, X. Lou, R. Hu, A. Qin,
Z. Zhao, B. Tang, Org. Lett. 2015, 17, 6174; (f) T. Hirano, S.
Sugihara, Y. Maeda, J. Phys. Chem. B 2013, 117, 16356
10 (a) J. Kumar, H. Tsumatori, J. Yuasa, T. Kawai, T.
Nakashima, Angew. Chem. 2015, 127, 6041; (b) T. Ikeda, T.
Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, T. Haino,
Chem. Commun. 2012, 48, 6025.
3 (a) S. Ito, K. Ikeda, S. Nakanishi, Y. Imai, M. Asami, Chem.
Commun. 2017, 53, 6323; (b) T. Imagawa, S. Hirata, K. Totani,
T. Watanabea, M. Vacha, Chem. Commun. 2015, 51, 13268; (c)
6
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2018, 00, 000–000