W. P. Almeida, F. Coelho / Tetrahedron Letters 44 (2003) 937–940
939
Acknowledgements
This work was supported by a grant from FAPESP
(grant 98/14640-0). We also thank the Brazilian
National Research Council (CNPq-301369/1987–9) for
a research fellowship to F.C.
References
1. Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tuinman, A.
A.; Boettner, F. E.; Kizu, H.; Schmidt, J. M.; Baczyn-
skyz, L.; Tomer, K. B.; Bontems, R. J. J. Am. Chem. Soc.
1987, 109, 6883–6885.
2. Madden, T.; Tran, H. T.; Beck, D.; Huie, R.; Newman,
R. A.; Pusztai, L.; Wright, J. J.; Abbruzzese, J. L. Clin.
Cancer. Res. 2000, 6, 1293–1301.
Scheme 4. Synthesis of N-Boc-dolaproine (2). Reagents and
conditions: (a) LiOH/THF, rt, 16 h, 87%; (b) Me3OBF4,
CH2Cl2, proton sponge, rt, 18 h, 70%.
transform 9a into a compound with well established
relative and absolute configurations. Thus, treatment
of ester 9a with LiOH–H2O/THF, at room tempera-
ture, gave N-Boc-nordolaproine (11) in 87% yield
(Scheme 4).
3. (a) Pettit, G. R.; Singh, S. B.; Hogan, F.; Lloyd-Williams,
P.; Herald, D. L.; Burkett, D. D.; Clewlow, P. J. J. Am.
Chem. Soc. 1989, 111, 5463–5645; (b) Hamada, Y.;
Hayashi, K.; Shioiri, T. Tetrahedron Lett. 1991, 32, 931–
934; (c) Tomioka, K.; Kanai, M.; Koga, K. Tetrahedron
Lett. 1991, 32, 2395–2398; (d) Shioiri, T.; Hayashi, K.;
Hamada, Y. Tetrahedron 1993, 49, 1913–1924; (e) Roux,
F.; Maugras, I.; Poncet, J.; Niel, G.; Jouin, P. Tetra-
hedron 1994, 50, 5345–5360; (f) Niel, G.; Roux, F.;
Maisonnasse, Y.; Maugras, I.; Ponet, J.; Jouin, P. J.
Chem. Soc., Perkin Trans. 1 1994, 1275–1280; (g) Shiori,
T. J. Synth. Org. Chem. Jpn. 1994, 52, 392–402; (h)
Miyazaki, K.; Kobayashi, M.; Natsume, T.; Gondo, M.;
Mikami, T.; Sakakibara, K.; Tsukagoshi, S. Chem.
Pharm. Bull. 1995, 43, 1706–1718; (i) Pettit, G. R.; Sri-
rangam, J. K.; Singh, S. B.; Williams, M. D.; Herald, D.
L.; Barkoczy, J.; Kantoci, D.; Hogan, F. J. Chem. Soc.,
Perkin Trans. 1 1996, 8, 859–863 and references cited
therein; (j) Pettit, G. R.; Burkett, D. D.; Barko´czy, J.;
Breneman, G. L.; Pettit, W. E. Synthesis 1996, 719–719;
(k) For a recent review, see: Shioiri, T.; Hamada, Y.
Synlett 2001, 184–201.
The hD value of 11 (−55.8°, c 0.71, MeOH) was
nearly identical to that reported in literature17 and,
therefore, confirmed that the absolute configuration
had been retained in all steps.
Then, the synthesis of N-Boc-dolaproine was achieved
in two subsequent steps from ester 9a. First, O-
methylation of the hydroxy moiety with MeO3BF4
and proton sponge afforded the methoxy ester 6 in
70% yield. Saponification of the methyl ester function
with LiOH in THF/H2O led to N-Boc-protected
dolaproine (2) in 86% yield.18 Since the removal of
Boc protective group is well documented in litera-
ture,1 the preparation of dolaproine has been formally
achieved from a Baylis–Hillman adduct.
4. Pettit, G. R.; Grealish, M. P. J. Org. Chem. 2001, 66,
8640–8642.
5. Lavergne, D.; Mordant, C.; Ratovelomanana-Vidal, V.;
The synthesis of N-Boc-dolaproine 2 was achieved in
four steps from N-Boc-prolinal, with an overall yield
of 27%.19 Despite moderate selectivities, this simple
and efficient synthetic strategy, associated with the
ready chromatographic separation of the diastereoiso-
mers, provided a new entry to N-Boc-dolaproine. As
far as we know this is the first report concerning the
asymmetric total synthesis of a dolaproine derivative
from a Baylis–Hillman adduct. Our results demon-
strate clearly that it is possible to retain the configu-
ration of the a-carbonyl center in N-Boc-prolinal,
using a Baylis–Hillman coupling carried out in the
presence of ultrasound.20,21
Genet, J.-P. Org. Lett. 2001, 3, 1909–1912.
6. For comprehensive reviews on the Baylis–Hillman reac-
tion, see: (a) Basavaiah, D.; Rao, P. D.; Hyma, R. S.
Tetrahedron 1996, 52, 8001–8062; (b) Ciganek, E. Org.
React. 1997, 51, 201–350; (c) Almeida, W. P.; Coelho, F.
Quim. Nova 2000, 23, 98–101; Chem. Abstr. 2000, 132,
236562e.
7. (a) Almeida, W. P.; Mateus, C. R.; Coelho, F. Tetra-
hedron Lett. 2000, 41, 2533–2536; (b) Coelho, F.;
Almeida, W. P.; Mateus, C. R.; Feltrin, M.; Costa, A. M.
Tetrahedron 2001, 57, 6901–6908; (c) Masunari, A.;
Trazzi, G.; Ishida, E.; Almeida, W. P.; Coelho, F. Synth.
Commun. 2001, 31, 2127–2136; (d) Coelho, F.; Rossi, R.
C. Tetrahedron Lett. 2002, 43, 2797–2800.
8. (a) Roos, G.; Manickum, T. Synth. Commun. 1991, 21,
2269–2274; (b) Drewes, S. E.; Khan, A. A.; Rowland, K.
Synth. Commun. 1993, 23, 183–188.
9. (a) Almeida, W. P.; Coelho, F. Tetrahedron Lett. 1998,
39, 8609–8612; (b) Coelho, F.; Almeida, W. P.; Veronese,
D.; Mateus, C. R.; Lopes, E. C. S.; Silveira, G. P. C.;
In summary, this reaction sequence is very easy to
implement and did not require anhydrous solvents,
a
temperamental boron enolate or a low reac-
tion temperature. Additional studies focusing on
the generalization of this method for other chiral a-
amino aldehydes using other activated acrylates are
ongoing in our laboratory and will be reported in due
course.