ORGANIC
LETTERS
2003
Vol. 5, No. 26
5043-5046
exo- and Enantioselective Cycloaddition
of Azomethine Ylides Generated from
N-Alkylidene Glycine Esters Using
Chiral Phosphine−Copper Complexes
Yoji Oderaotoshi, Wenji Cheng, Shintaro Fujitomi, Yukihiro Kasano,
Satoshi Minakata, and Mitsuo Komatsu*
Department of Applied Chemistry, Graduate School of Engineering, Osaka UniVersity,
Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
Received October 24, 2003
ABSTRACT
High diastereo- and enantioselectivities were obtained for the asymmetric 1,3-dipolar cycloaddition of azomethine ylides generated from
N-alkylideneglycine esters with dipolarophiles using chiral phosphine−copper complexes as catalysts. Whereas the cycloaddition of azomethine
ylides catalyzed by metal salts generally afforded endo-adducts as the predominant product, the present method is the first example of an
exo-selective cycloaddition.
The cycloaddition of azomethine ylides, a representative 1,3-
dipole, with alkenes is a useful tool for the construction of
the pyrrolidine ring contained in many biologically active
compounds,1a and the development of methods for the
diastereo- and enantioselective cycloaddition of 1,3-dipoles
is important in modern synthetic organic chemistry.1b,c Thus
far, azomethine ylides have been generated by the ring
opening of aziridines,2 the 1,2-proton shift of N-arylidene-
benzylamines,3 abstraction of the R-proton from iminium
salts4 or metal complexes of N-alkylidene-R-amino acid
esters,5 and related reactions. We are also in the process of
studying the cycloaddition of azomethine ylides generated
by 1,2-silatropy of N-arylidene-R-silylbenzylamines6 and 1,4-
metallatropy of R-metalloamides.6g,7 Among these, the dia-
stereoselective cycloaddition of azomethine ylides generated
from N-alkylideneamino acid esters in the presence of metal
salts and bases has been a subject of active investigation.
(5) For examples, see: (a) Tsuge, O.; Kanemasa, S.; Yoshioka, M. J.
Org. Chem. 1988, 53, 1384-1391. (b) Grigg, R.; Montgomery, J.;
Somasunderam, A. Tetrahedron 1992, 48, 10431-10442.
(6) (a) Komatsu, M.; Okada, H.; Yokoi, S.; Minakata, S. Tetrahedron
Lett. 2003, 44, 1603-1606. (b) Okada, H.; Akaki, T.; Oderaotoshi, Y.;
Minakata, S.; Komatsu, M. Tetrahedron 2003, 59, 197-205. (c) Komatsu,
M.; Okada, H.; Akaki, T.; Oderaotoshi, Y.; Minakata, S. Org. Lett. 2002,
4, 3505-3508. (d) Ohno, M.; Komatsu, M.; Miyata, H.; Ohshiro, Y.
Tetrahedron Lett. 1991, 32, 5813-5816. (e) Komatsu, M.; Ohno, M.; Tsuno,
S.; Ohshiro, Y. Chem. Lett. 1990, 575-576. (f) Iyoda, M.; Sultana, F.;
Kato, A.; Yoshida, M.; Kuwatani, Y.; Komatsu, M.; Nagase, S. Chem. Lett.
1997, 63-64. (g) Iyoda, M.; Sultana, F.; Komatsu, M. Chem. Lett. 1995,
1133-1134.
(1) (a) Gribble, G. W. In ComprehensiVe Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.: Pergamon: Oxford,
U.K., 1996; Vol. 2, pp 207-257. (b) Gothelf, K. V.; Jørgensen, K. A. Chem.
ReV. 1998, 98 , 863-909. (c) Lown, J. W. In 1,3-Dipolar Cycloaddition
Chemistry; Padwa A., Ed.; John Wiley & Sons: New York, 1984; Vol. 1,
pp 653-732.
(2) Huisgen, R.; Scheer, W.; Huber, H. Tetrahedron Lett. 1966, 7, 397-
464.
(7) (a) Komatsu, M.; Kasano, Y.; Yamaoka, S.; Minakata, S. Synthesis
2003, 1398-1402. (b) Washizuka, K.-I.; Nagai, K.; Minakata, S.; Ryu, I.;
Komatsu, M. Tetrahedron Lett. 2000, 41, 691-695. (c) Washizuka, K.-I.;
Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron 1999, 55, 12969-12976.
(d) Washizuka, K.-I.; Nagai, K.; Minakata, S.; Ryu, I.; Komatsu, M.
Tetrahedron Lett. 1999, 40, 8849-8853.
(3) For examples, see: (a) Grigg, R.; Kemp, J. J. Chem. Soc., Chem.
Commun. 1978, 109-111. (b) Grigg, R.; Donegan, G.; Gunaratne, H. Q.
N. Tetrahedron 1989, 45, 1723-1746.
(4) Huisgen, R.; Grashey, R. Tetrahedron Lett. 1963, 4, 1441-1445.
10.1021/ol036076s CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/03/2003