K. Sato et al. / Tetrahedron Letters 46 (2005) 7679–7681
Table 3. Examination of the selective synthesis of 6 and 7
7681
Entry
5b
Additive (equiv)
Time (h)
Yield of 6b (%)
Yield of 7b (%)
1a
2
3
4
5
6
7
Isolated
Synthesized by MgSO4
Synthesized and then removed of MgSO4
Isolated
Isolated
Isolated
Isolated
None
None
None
MgSO4 (2)
BnNH2 (0.1)
H2O (1)
1
3
1
1
1
2
1
Trace
46
4
5
3
83
8
59
64
80
16
Trace
48
65
MgSO4Æ7H2O (1)
a The entry 1 of Table 3 is the same result with the entry 2 of Table 2.
Bn
R
O
Bn
R
Bn
H
NH
CF2COOEt
RhCl(PPh3)3
N
N
References and notes
BrCF2COOEt
+
+
CH2Cl2, Et2Zn
F
1
R
H
H
F
MgSO4 7H2O
7
1. Jacob, L. S. Pharmacology; Williams and Wilkins, 1996.
2. (a) Chen, L.; Zhao, G.; Ding, Y. Tetrahedron Lett. 2003,
44, 2611–2614; (b) Ukaji, Y.; Takenaka, S.; Horita, Y.;
Inomata, K. Chem. Lett. 2001, 254–255; (c) Courtois, G.;
Miginiac, L. J. Organomet. Chem. 1993, 450, 33–40;
(d) Yamamoto, Y.; Ito, W. Tetrahedron 1988, 44, 5415–
5423.
5b,c,e
6b = 65%
6c = 59%
6e = 60%
0˚C
(traces from
5b,c,e)
Scheme 3. Reaction of 1 with 5 in the presence of RhCl(PPh3)3 and
MgSO4Æ7H2O.
3. (a) Hata, S.; Iguchi, M.; Iwasawa, T.; Yamada, K.;
Tomioka, K. Org. Lett. 2004, 6, 1721–1723; (b) Ishimaru,
K.; Kojima, T. J. Org. Chem. 2003, 68, 4959–4962; (c)
Saito, S.; Hatanaka, K.; Yamamoto, H. Tetrahedron 2001,
57, 875–887; (d) Kobayashi, S.; Araki, M.; Ishitani, H.;
Nagayama, S.; Hachiya, I. Synlett 1995, 233–234; (e)
Gennari, C.; Schimperna, G.; Venturini, I. Tetrahedron
1988, 44, 4221–4232.
4. (a) Tsuji, J. Transition Metal Reagents and Catalysts:
Innovations in Organic Synthesis; John Wiley & Sons:
Chichester, 2002; (b) Transition Metals for Organic Syn-
thesis; Beller, M., Bolm, C., Eds.; VCM: Weinheim, 1998.
5. (a) Hayashi, T. Bull. Chem. Soc. Jpn. 2004, 77, 13–21; (b)
Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196;
(c) Hayashi, T. Synlett 2001, 879–887; (d) Miyaura, N.
ACS Sympos. Series 2001, 783, 94–107.
6. Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. Org. Lett.
2004, 6, 4359–4361.
7. Sato, K.; Tarui, A.; Kita, T.; Ishida, Y.; Tamura, H.;
Omote, M.; Ando, A.; Kumadaki, I. Tetrahedron Lett.
2004, 45, 5735–5737.
8. (a) Kanai, K.; Wakabayashi, H.; Honda, T. Heterocycles
2002, 58, 47–51; (b) Honda, T.; Wakabayashi, H.; Kanai,
K. Chem. Pharm. Bull. 2002, 50, 307–308.
9. (a) Marcotte, S.; Pannecoucke, X.; Feasson, C.; Quirion,
J.-C. J. Org. Chem. 1999, 64, 8461–8464; (b) Angelastro,
M. R.; Bey, P.; Mehdi, S.; Peet, N. P. Bioorg. Med.
Chem. Lett. 1992, 2, 1235–1238; (c) Taguchi, T.; Kita-
gawa, O.; Suda, Y.; Ohkawa, S.; Hashimoto, A.; Iitaka,
Y.; Kobayashi, Y. Tetrahedron Lett. 1988, 29, 5291–
5294.
(entry 2). These results supported our assumption that
H2O played an important role for the selective forma-
tion of 6 and 7. By the examination of several reaction
conditions, the addition of equimolar amount of
MgSO4Æ7H2O was found to lead to the best formation
of 6. The application to other substrates (5c,e) also gave
the similar results in moderate to good yields (Scheme
3).
In conclusion, we could obtain difluoro-b-lactams (7) in
good to excellent yields using rhodium-catalyzed Refor-
matsky-type reaction. Moreover, we could obtain 3-ami-
no-2,2-difluorocarboxylic esters (6) in good yields by
adding MgSO4Æ7H2O to the reaction medium. This is
the first report for the selective synthesis of 6 and 7 with-
out the troublesome handling. In addition, compounds 6
and 7 are fluorine analogs of b-amino acid derivatives
and are very important compounds in pharmacology.
We provided a new procedure to synthesize each by add-
ing MgSO4Æ7H2O or not. There are no reports up to now
that difluoro-b-lactams and 3-amino-2,2-difluorocarb-
oxylic esters were selectively synthesized only from the
addition of an additive. We believe that this reaction
could be widely used in various fields.
Supplementary data
Supplementary data associated with this article can be
10. Otaka, A.; Watanabe, J.; Yukimasa, A.; Sasaki, Y.;
Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura, H.;
Fujii, N. J. Org. Chem. 2004, 69, 1634–1645.