Chemistry & Biology
MitoSOD
Determination of Aconitase Activity
Cocheme´ , H.M., and Murphy, M.P. (2008). Complex I is the major site of mito-
Aliquots (10 ml) of the snap-frozen mitochondrial incubtions samples were
incubated in assay buffer (190 ml) comprising Tris-HCl (50 mM [pH 7.4]),
MnCl2 (0.6 mM), sodium citrate (5 mM [pH 7.0]), NADP+ (0.2 mM), Triton
X-100 (0.1% v/v), and isocitrate dehydrogenase (0.4 U mlꢁ1) in quintuplicate
at 30ꢂC in a 96-well plate, and the appearance of NADPH (ε340 = 6.22 3 103
chondrial superoxide production by paraquat. J. Biol. Chem. 283, 1786–1798.
´
Collins, Y., Chouchani, E.T., James, A.M., Menger, K.E., Cocheme, H.M., and
Murphy, M.P. (2012). Mitochondrial redox signalling at a glance. J. Cell Sci.
125, 801–806.
Dessolin, J., Schuler, M., Quinart, A., De Giorgi, F., Ghosez, L., and Ichas, F.
(2002). Selective targeting of synthetic antioxidants to mitochondria: towards
a mitochondrial medicine for neurodegenerative diseases? Eur. J. Pharmacol.
447, 155–161.
Mꢁ1 cmꢁ1) was monitored over 10 min at 340 nm (Cocheme and Murphy,
´
2008).
SUPPLEMENTAL INFORMATION
Dhanasekaran, A., Kotamraju, S., Karunakaran, C., Kalivendi, S.V., Thomas,
S., Joseph, J., and Kalyanaraman, B. (2005). Mitochondria superoxide dismu-
tase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role
of mitochondrial superoxide. Free Radic. Biol. Med. 39, 567–583.
Supplemental Information includes two figures, three tables, and Supple-
mental Experimental Procedures and can be found with this article online at
Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L.,
Lewis, W., Harrison, D.G., and Dikalov, S.I. (2010). Therapeutic targeting of
mitochondrial superoxide in hypertension. Circ. Res. 107, 106–116.
ACKNOWLEDGMENTS
Doctrow, S.R., Huffman, K., Marcus, C.B., Musleh, W., Bruce, A., Baudry, M.,
and Malfroy, B. (1997). Salen-manganese complexes: combined superoxide
dismutase/catalase mimics with broad pharmacological efficacy. Adv.
Pharmacol. 38, 247–269.
This work was supported by Grant UOA 0407 of the Marsden Fund from the
Royal Society of New Zealand and by the Medical Research Council (UK).
Received: May 30, 2012
Revised: July 27, 2012
Faulkner, K.M., Liochev, S.I., and Fridovich, I. (1994). Stable Mn(III) porphyrins
mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem.
269, 23471–23476.
Accepted: August 4, 2012
Published: October 25, 2012
Feltham, R.D., and Hayter, R.G. (1964). The electrolyte type of ionized
complexes. J. Chem. Soc., 0, 4587–4591.
REFERENCES
ꢀ
ꢀ
Filipovic, M.R., Duerr, K., Mojovic, M., Simeunovic, V., Zimmermann, R.,
ꢀ
ꢀ
ꢀ
ꢀ
Niketic, V., and Ivanovic-Burmazovic, I. (2008). NO dismutase activity of
seven-coordinate manganese(II) pentaazamacrocyclic complexes. Angew.
Chem. Int. Ed. Engl. 47, 8735–8739.
Anderson, R.F., Denny, W.A., Li, W., Packer, J.E., Tercel, M., and Wilson, W.R.
(1997). Pulse radiolysis studies on the fragmentation of arylmethyl quaternary
nitrogen mustards by one-electron reduction in aqueous solution. J. Phys.
Chem. A 101, 9704–9709.
ꢀ
Filipovic, M.R., Koh, A.C., Arbault, S., Niketic, V., Debus, A., Schleicher, U.,
ꢀ
ꢀ
ꢀ
Bogdan, C., Guille, M., Lemaıˆtre, F., Amatore, C., and Ivanovic-Burmazovic,
I. (2010). Striking inflammation from both sides: manganese(II) pentaazama-
crocyclic SOD mimics act also as nitric oxide dismutases: a single-cell study.
Angew. Chem. Int. Ed. Engl. 49, 4228–4232.
Anderson, R.F., Shinde, S.S., Hay, M.P., Gamage, S.A., and Denny, W.A.
(2003). Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor
agents to oxidizing species following their one-electron reduction. J. Am.
Chem. Soc. 125, 748–756.
Filipovska, A., Kelso, G.F., Brown, S.E., Beer, S.M., Smith, R.A., and Murphy,
Asin-Cayuela, J., Manas, A.R., James, A.M., Smith, R.A., and Murphy, M.P.
(2004). Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.
FEBS Lett. 571, 9–16.
M.P. (2005). Synthesis and characterization of
a triphenylphosphonium-
conjugated peroxidase mimetic. Insights into the interaction of ebselen with
mitochondria. J. Biol. Chem. 280, 24113–24126.
Aston, K., Rath, N., Naik, A., Slomczynska, U., Schall, O.F., and Riley, D.P.
(2001). Computer-aided design (CAD) of Mn(II) complexes: superoxide
dismutase mimetics with catalytic activity exceeding the native enzyme.
Inorg. Chem. 40, 1779–1789.
Finkel, T. (2005). Radical medicine: treating ageing to cure disease. Nat. Rev.
Mol. Cell Biol. 6, 971–976.
ꢀ
ꢀ
Friedel, F.C., Lieb, D., and Ivanovic-Burmazovic, I. (2012). Comparative
studies on manganese-based SOD mimetics, including the phosphate effect,
by using global spectral analysis. J. Inorg. Biochem. 109, 26–32.
ꢀ
Batinic-Haberle, I. (2002). Manganese porphyrins and related compounds as
mimics of superoxide dismutase. Methods Enzymol. 349, 223–233.
Gane, E.J., Weilert, F., Orr, D.W., Keogh, G.F., Gibson, M., Lockhart, M.M.,
Frampton, C.M., Taylor, K.M., Smith, R.A., and Murphy, M.P. (2010). The mito-
chondria-targeted anti-oxidant mitoquinone decreases liver damage in
a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026.
ꢀ
ꢀ
Batinic-Haberle, I., Rebouc¸ as, J.S., and Spasojevic, I. (2010). Superoxide
dismutase mimics: chemistry, pharmacology, and therapeutic potential.
Antioxid. Redox Signal. 13, 877–918.
Bielski, B.H.J., Cabelli, D.E., and Arudi, R. (1985). Reactivity of HO2,/O2
,-
Gotoh, N., and Niki, E. (1992). Rates of interactions of superoxide with vitamin
E, vitamin C and related compounds as measured by chemiluminescence.
Biochim. Biophys. Acta 1115, 201–207.
radicals in aqueous solution. J. Phys. Chem. Ref. Data 14, 1041–1100.
Brown, G.C., and Brand, M.D. (1985). Thermodynamic control of electron flux
through mitochondrial cytochrome bc1 complex. Biochem. J. 225, 399–405.
Ilan, Y., and Rabani, J. (1976). Some fundamental reactions in radiation-
chemistry: nanosecond pulse radiolysis. Int. J. Radiat. Phys. Chem. 8,
609–611.
Brown, S.E., Ross, M.F., Sanjuan-Pla, A., Manas, A.R., Smith, R.A., and
Murphy, M.P. (2007). Targeting lipoic acid to mitochondria: synthesis and
characterization of a triphenylphosphonium-conjugated alpha-lipoyl deriva-
tive. Free Radic. Biol. Med. 42, 1766–1780.
Iranzo, O. (2011). Manganese complexes displaying superoxide dismutase
activity: a balance between different factors. Bioorg. Chem. 39, 73–87.
Bull, C., Niederhoffer, E.C., Yoshida, T., and Fee, J.A. (1991). Kinetic studies of
superoxide dismutases: properties of the manganese-containing protein
from Thermus thermophilus. J. Am. Chem. Soc. 113, 4069–4076.
Kagan, V.E., Jiang, J., Bayir, H., and Stoyanovsky, D.A. (2007). Targeting
nitroxides to mitochondria: location, location, location, and ...concentration:
highlight commentary on ‘‘Mitochondria superoxide dismutase mimetic
inhibits peroxide-induced oxidative damage and apoptosis: role of mitochon-
drial superoxide’’. Free Radic. Biol. Med. 43, 348–350.
Cadenas, E., and Davies, K.J. (2000). Mitochondrial free radical generation,
oxidative stress, and aging. Free Radic. Biol. Med. 29, 222–230.
Chen, Z., Siu, B., Ho, Y.S., Vincent, R., Chua, C.C., Hamdy, R.C., and Chua,
B.H. (1998). Overexpression of MnSOD protects against myocardial
ischemia/reperfusion injury in transgenic mice. J. Mol. Cell. Cardiol. 30,
2281–2289.
Kelso, G.F., Porteous, C.M., Coulter, C.V., Hughes, G., Porteous, W.K.,
Ledgerwood, E.C., Smith, R.A.J., and Murphy, M.P. (2001). Selective targeting
of a redox-active ubiquinone to mitochondria within cells: antioxidant and
antiapoptotic properties. J. Biol. Chem. 276, 4588–4596.
Chemistry & Biology 19, 1237–1246, October 26, 2012 ª2012 Elsevier Ltd All rights reserved 1245