198
S. Li et al. / Solid State Communications 149 (2009) 196–198
in an atomic scale, which is especially suitable for the epitaxial
growth of materials with a face-centered cubic structure. A small
lattice mismatch of 0.05 between KCl substrate (a = 6.260 Å) and
ZB-CrSb (a = 5.92 Å) is estimated in ZB-CrSb/KCl (100) systems.
This favorable lattice matching gives rise to a relatively thicker film
thickness of ZB-CrSb on the KCl (100) substrates.
4. Conculsions
Room temperature ferromagnetism in CrSb film is attributed to
the ferromagnetic ZB-CrSb. Relatively thicker ZB-CrSb films with
a critical thickness of about 5 nm were achieved by deposition on
the KCl (100) substrates.
Acknowledgements
Fig. 3. The HRTEM image and EDS (insert) of the CrSb film.
This work was financially supported by National Science
Foundation of China (NSFC) (Grant No. 10504010) and Science
Foundation of Sci. & Tech. Department of Fujian Province (Grant
No.: 2005J023, 2006H0018 and 2006J0152).
of nanocrystallites with a crystal size about 10 nm. From the EDS
circles, the d-spacings of 2.09 and 1.48 Å are calculated, which may
be assigned to the zinc-blende CrSb (220) and (400), respectively.
Although there are no ZB-CrSb X-ray diffraction (XRD) JCPDS cards
at this moment, XRD pattern can be calculated based on the ZB
structure. According to the report by Galanakis et al. [15], the lattice
constant of ZB-CrSb is 5.92 Å, thus, the d-spacings of ZB-CrSb (220)
and (400) should be at 2.093 and 1.480 Å, respectively, which
are well consistent with the EDS result. On the other hand, no d-
spacings of KCl and other Cr–Sb compounds, such as, hexagonal
NiAs-type CrSb (NA-CrSb), CrSb2, Cr0.1Sb0.9, etc., are near these two
values. Based on the analysis above, two circles can be assigned
as (220) and (400) of ZB-CrSb, respectively. The HRTEM and EDS
results reveal that a pure ZB-CrSb phase was formed in the CrSb
film deposited on KCl substrates.
ZB-CrSb is a robust ferromagnetic half-metal in theory [25,26].
The microstructure analysis above demonstrates that the strong
ferromagnetic properties of CrSb film are attributed to the ZB-CrSb.
The real MS of ZB-CrSb is not reported up to now. However, the
strong ferromagnetic coupling in ZB-CrSb with 3 µB per formula
unit was predicted by theoretical calculation [25,26]. With the
lattice constant of a = 5.92 Å for ZB-CrSb, the theoretical Ms of
ZB-CrSb is estimated as 536 emu/cm3, analogy to the calculation
method reported by Akinaga et al. [13]. If taking the MS at 5 K
530 emu/cm3 is very close to theoretical MS of ZB-CrSb. The film
thickness of ZB-CrSb phase of about 5 nm is relatively thicker
compared with the ones reported up to now.
References
[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne,
G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61 (1988) 2472.
[2] G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39 (1989) 4828.
[3] B. Dieny, Phys. Rev. B 43 (1991) 1297.
[4] N.F. Mott, Proc. R. Soc. Lond. A 153 (1936) 699.
[5] R.E. Camley, J. Barnaś, Phys. Rev. Lett. 63 (1989) 664.
[6] J. Barnaś, A. Fuss, R.E. Camley, P. Grünberg, W. Zinn, Phys. Rev. B 42 (1990)
8110.
[7] A. Barthélémy, A. Fert, Phys. Rev. B 43 (1991) 13124.
[8] T. Valet, A. Fert, Phys. Rev. B 48 (1993) 7099.
[9] W.H. Butler, X.G. Zhang, T.C. Schulthess, D.M.C. Nicholson, J.M. MacLaren,
V.S. Speriosu, B.A. Gurney, Phys. Rev. B 56 (1997) 14574.
[10] J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74 (1995)
3273.
[11] M. Johnson, R.H. Silsbee, Phys. Rev. B 37 (1988) 5326.
[12] R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phy. Rev. Lett. 50
(1983) 2024.
[13] H. Akinaga, T. Manago, M. Shirai, Jpn. J. Appl. Phys. 39 (2000) L1118.
[14] F. Matsukura, H. Ohno, A. Shen, Y. Sugawara, Phys. Rev. B 57 (1998) R2037.
[15] I. Galanakis, P. Mavropoulos, Phys. Rev. B 67 (2003) 104417.
[16] J.H. Zhao, F. Matsukura, K. Takamura, E. Abe, D. Chiba, H. Ohno, Appl. Phys. Lett.
79 (2001) 2776.
[17] J.J. Deng, J.H. Zhao, J.F. Bi, Z.C. Niu, F.H. Yang, X.G. Wu, H.Z. Zheng, J. Appl. Phys.
99 (2006) 093902.
[18] H. Akinaga, M. Mizuguchi, J. Phys.: Condens. Matter. 16 (2004) S5549.
[19] K. Ono, J. Okabayashi, M. Mizuguchi, M. Oshima, A. Fujimori, H. Akinaga, J. Appl.
Phys. 91 (2002) 8088.
[20] C.Y. Fong, M.C. Qian, J.E. Pask, L.H. Yang, S. Dag, Appl. Phys. Lett. 84 (2004) 239.
[21] M. Mizuguchi, H. Akinaga, T. Manago, K. Ono, M. Oshima, M. Shirai, M. Yuri,
H.J. Lin, H.H. Hsieh, C.T. Chen, J. Appl. Phys. 91 (2002) 7917.
[22] J.H. Zhao, F. Matsukura, K. Takamura, D. Chiba, Y. Ohno, K. Ohtani, H. Ohno,
Mater. Sci. Semicond. Proc. 6 (2003) 507.
[23] J. Okabayashi, M. Mizuguchi, K. Ono, M. Oshima, A. Fujimori, H. Kuramochi, H.
Akinaga, Phys. Rev. B 70 (2004) 233305.
As for the formation of relatively thicker ZB-CrSb films, it can
be attributed to the good lattice matching between KCl and ZB-
CrSb. If using a good lattice matching buffer layer, e.g. (In, Ga) as
a buffer layer, the critical thickness of ZB-CrSb can be increased
from 1 to 3 nm [16,17]. For the films grown on a GaAs substrate, the
be attributed to that the lattice mismatch between ZB–CrAs and
GaAs is smaller than that between ZB-CrSb and GaAs [13,17,27].
The KCl substrate has (h00) a cleavage face with surface plainness
[24] S.D. Li, L.Y. Lü, Z.G. Huang, J. Magn. Magn. Mater. 312 (2007) 305.
[25] B.G. Liu, Phys. Rev. B 67 (2003) 172411.
[26] M. Shirai, J. Appl. Phys. 93 (2003) 6844.
[27] J.F. Bi, J.H. Zhao, J.J. Deng, Y.H. Zheng, S.S. Li, X.G. Wu, Q.J. Jia, Appl. Phys. Lett.
88 (2006) 142509.