Journal of the American Chemical Society
Communication
ity.4d,11,13−15 Although such a process is clearly not feasible under
the current paradigm, where radical intermediates are generated
from the organoboron precursors, the prochiral radicals
generated can be engaged in stereoconvergent transformations
byemploying enantioenriched ligands around the Ni catalyst.18,35
The fine-tuning of stereoconvergent protocols by ligand
development and screening has the potential to provide a unique
tactic for asymmetric synthesis by eliminating the need to
synthesize optically active organometallic reagents, approaches to
which are often long, tedious, and intolerant of sensitive
functional groups.36
́
(9) Vila, C.; Giannerini, M.; Hornillos, V.; Fananas-Mastral, M.;
̃
Feringa, B. L. Chem. Sci. 2014, 5, 1361.
(10) Li, L.; Wang, C.-Y.; Huang, R.; Biscoe, M. R. Nat. Chem. 2013, 5,
607.
(11) Sandrock, D. L.; Jean-Gerard, L.; Chen, C.; Dreher, S. D.;
Molander, G. A. J. Am. Chem. Soc. 2010, 132, 17108.
(12) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc.
2010, 132, 11033.
(13) Molander, G. A.; Wisniewski, S. R. J. Am. Chem. Soc. 2012, 132,
16856.
(14) (a) Imao, D.; Glasspoole, B. W.; Laberge, S.; Crudden, C. M. J. Am.
Chem. Soc. 2009, 5024. (b) Ohmura, T.; Awano, T.; Suginome, M. J. Am.
Chem. Soc. 2010, 132, 13191.
The most attractive feature of the reported photoredox cross-
coupling may be its operational simplicity. By eliminating the
need to prepare sensitive organometallics, titrate reagents, or use
glovebox techniques, these methods greatly enhance the
approachability of secondary alkyl cross-couplings. Conse-
quently, the methods described here provide a significant
(15) Glasspoole, B. W.; Ghozati, K.; Moir, J. W.; Crudden, C. M. Chem.
Commun. 2012, 48, 1230.
(16) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2014, 53, 2.
(17) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem.
2002, 67, 5553.
(18) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
(19) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2013, 52,
7362.
3
2
advancement to Csp −Csp cross-coupling.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and spectral data. This material is available
(20) Recent reviews on photoredox catalysis: (a) Schultz, D. M.; Yoon,
T. P. Science 2014, 343, 985. (b) Prier, C. K.; Rankic, D. A.; Macmillan, D.
W. C. Chem. Rev. 2013, 113, 5322. (c) Tucker, J. W.; Stephenson, C. R. J.
J. Org. Chem. 2012, 77, 1617. Review on photoredox andtransition metal
catalysis: (d) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-
Eur. J. 2014, 20, 3874.
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
(21) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc.
2013, 135, 12004.
■
(22) Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
(23) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562.
(24) Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2010, 132, 13600.
The authors declare no competing financial interest.
(25) In this catalytic cycle, initial reduction of the NiIICl2 is required to
access an active Ni0 catalyst. This is likely mediated by the photocatalyst
through sacrificial oxidation of trifluoroborate and subsequent reduction
of NiIICl2 to generate the active Ni0 species.
ACKNOWLEDGMENTS
■
Alexandra Nilova (University of Pennsylvania) is acknowledged
for some substrate preparation and reaction screening. Dr. Simon
Berritt and Seth Martin (University of Pennsylvania) developed a
photoredox screening platform that greatly facilitated the
research. Frontier Scientific is thanked for the donation of
boron compounds used in this investigation. Johnson-Matthey is
acknowledged for the donation of IrCl3 used for the synthesis of
the photocatalyst. We thank Pfizer, NIGMS (R01 GM081376),
(26) We also recognize the possibility of an alternative quenching cycle,
where reduction of NiI occurs from *IrIII to generate an IrIV species,
which can then oxidize the secondary potassium alkyltrifluoroborate and
generate IrIII in the ground state. However, the high concentration of
RBF3K relative to Ni in the reaction mixture at the outset leads us to favor
the mechanism outlined in the text and Figure 2.
(27) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.;
Kozlowski, M. C., manuscript submitted.
̈
̇
and TUBITAK for financial support of this research.
(28) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-
Carbon Bonds; Pergamon Press: New York, 1986.
(29) For example, in THF as solvent, coupling at the carbon alpha to
oxygen was observed alongside the desired alkyl cross-coupling product.
(30) Hallen, R. T.; Gleicher, G. J.; Mahiou, B.; Clapp, G. E. J. Phys. Org.
Chem. 1989, 2, 367.
(31) Molander, G. A.; Gormisky, P. E. J. Org. Chem. 2008, 73, 7481.
(32) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem.
Biol. 2010, 14, 347.
REFERENCES
■
(1) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(2) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(3) Lozada, J.; Liu, Z.; Perrin, D. M. J. Org. Chem. 2014, 79, 5365.
(4) (a) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
(b) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. J. Am.
Chem. Soc. 2008, 130, 9257. (c) van den Hoogenband, A.; Lange, J. H.
M.; Terpstra, J. W.; Koch, M.; Visser, G. M.; Visser, M.; Korstanje, T. J.;
Jastrzebski, J. T. B. H. Tetrahedron Lett. 2008, 49, 4122. (d) Li, L.; Zhao,
S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. J. Am. Chem. Soc. 2014, 136,
14027.
(5) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to
Catalysis; University Science Books: Sausalito, CA, 2009.
(6) (a) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.;
Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314. Organoboron
transmetalation rates mirror the trends established for the corresponding
organostannanes: (b) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983,
105, 6129.
(33) Zuo, Z.; Ahneman, D.; Chu, L.; Terrett, J.; Doyle, A. G.;
MacMillan, D. W. C. Science 2014, 345, 437.
(34) (a) Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. J. Org. Chem.
2014, 79, 4161. (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,
1461.
(35) (a) For list of asymmetric secondary bromide cross-coupling
ligands and substrates, see: Tasker, S. Z.; Standley, E. A.; Jamison, T. F.
Nature 2014, 509, 299. (b) For an example of asymmetric cross-coupling
of a secondary bromide, see: Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am.
Chem. Soc. 2012, 134, 17003.
(36) (a) Matteson, D. S. Tetrahedron 1998, 54, 10555. (b) Brown, H.
C.; Singaram, B. Acc. Chem. Res. 1988, 21, 287. (c) Larouche-Gauthier,
R.; Fletcher, C. J.; Couto, I.; Aggarwal, V. K. Chem. Commun. 2011, 47,
12592.
(7) (a) Han, C.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 7532.
(b) Pompeo, M.; Froese, R. D. J.; Hadei, N.; Organ, M. G. Angew. Chem.,
Int. Ed. 2012, 51, 11354.
(8) Hayashi, T.; Konishi, M.; Kobori, Y.; Makoto, K.; Taiichi, H.;
Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX