also analysed on 1H NMR, and COSY or NOESY when
considered necessary.
1a: 1H NMR (400 MHz, CDCl3) δ 1.35 (d, 3H), 3.55 (m, 1H),
4.08 (t, 1H), 4.70 (t, 1H), 6.80 (d, 1H), 6.88 (t, 1H), 7.13 (t, 1H),
7.17 (d, 1H). MS (EI) m/z 134 (Mϩ), 119, 105, 91, 77.
Acknowledgements
We are grateful for financial support from the Swedish Research
Council and the Carl Trygger Foundation. Knut and Alice
Wallenberg are gratefully acknowledged for financial support
of a glove box. We would also like to thank Fredrik Lehmann
and Marcus Fjällgren for a sample of 3-hydroxy-2-iodo-
pyridine.
Notes and references
‡ The cis–trans diastereomers of the product, 1,2,3,4,4a,9b-hexa-
hydrodibenzofuran, were synthesised as reference in two steps from
dibenzofuran according to literature procedure,16 and the chiral
stationary phase GC confirmed that the two diastereomers (cis–trans)
were well separated. The configuration of the products of the SmI2–
H2O–amine couplings was determined by NOESY experiments.
1 J. L. Namy, P. Girard and H. Kagan, Nouv. J. Chim., 1977, 1, 5.
2 G. A. Molander, Org. React. (N. Y.), 1994, Vol. 46, p. 211.
3 J. L. Namy, J. Souppe and H. B. Kagan, Tetrahedron Lett., 1983, 24,
765; N. Taniguchi and M. Uemura, J. Am. Chem. Soc., 2000, 122,
8301; A. Fürstner, R. Csuk, C. Rohrer and H. Weidmann, J. Chem.
Soc., Perkin Trans. 1, 1988, 1729; G. A. Molander and C. Kenny,
J. Am. Chem. Soc., 1989, 111, 8236.
4 H. Villar, F. Guibé, C. Aroulanda and P. Lesot, Tetrahedron: Asym-
metry, 2002, 13, 1465; W. Cabri, I. Candiani, M. Colombo, L. Fran-
zoi and A. Bedeschi, Tetrahedron Lett., 1995, 36, 949; P. G. Steel,
J. Chem. Soc., Perkin Trans. 1, 2001, 2727; A. Krief and A.-M.
Laval, Chem. Rev., 1999, 99, 745; G. A. Molander, in Radicals
in Organic Synthesis Vol. 1: Basic Principles, eds. P. Renaud and
M. P. Sibi, Wiley-VCH,Weinheim, 2001, p. 153; E. Hasegawa and
D. P. Curran, Tetrahedron Lett., 1993, 34, 1717; A. Rivkin,
T. Nagashima and D. P. Curran, Org. Lett., 2003, 5, 419.
5 G. A. Molander, G. A. Brown and I. Storch de Garcia, J. Org.
Chem., 2002, 67, 3459; G. A. Molander and C. R. Harris,
Chem. Rev., 1996, 96, 307.
6 A. Dahlén and G. Hilmersson, Tetrahedron Lett., 2002, 43, 7197;
A. Dahlén and G. Hilmersson, Chem. Eur. J., 2003, 9, 1123;
A. Dahlén, G. Hilmersson, B. W. Knettle and R. A. Flowers, II,
J. Org. Chem., 2003, 68, 4870.
7 A. Dahlén and G. Hilmersson, Tetrahedron Lett., 2003, 44, 2661.
8 Y. Kita, H. Nambu, N. G. Ramesh, G. Anilkumar and M. Matsugi,
Org. Lett., 2001, 3, 1157; S. R. Graham, J. A. Murphy and
D. Coates, Tetrahedron Lett., 1999, 40, 2415; H. Yorimitsu,
H. Shinokubo and K. Oshima, Chem. Lett., 2000, 2, 104.
9 H. Togo and O. Kikuchi, Tetrahedron Lett., 1988, 29, 4133;
A. Studer and S. Amrein, Angew. Chem., Int. Ed., 2000, 39, 3080;
K. Shankaran, C. P. Sloan and V. Snieckus, Tetrahedron Lett., 1985,
26, 6001.
10 E. Negishi, T. Nguyen and B. O’Connor, Heterocycles, 1989, 28, 55.
11 M. Uchiyama, M. Kameda, O. Mishima, N. Yokoyama, M. Koike,
Y. Kondo and T. Sakamoto, J. Am. Chem. Soc., 1998, 120, 4934.
12 G. Fráter and H. Schmid, Helv. Chim. Acta, 1967, 50, 255.
13 S. Olivero, J.-P. Rolland and E. Duñach, Organometallics, 1998, 17,
3747.
14 D. P. Curran, T. L. Fevig, C. P. Jasperse and M. J. Totleben, Synlett,
1992, 12, 943; D. P. Curran and M. J. Totleben, J. Am. Chem. Soc.,
1992, 114, 6050.
15 O. Valverde, R. Maldonado and B. L. Kieffer, CNS Drugs, 1998, 10,
1; L. L. Christrup, Acta Anaest. Scand., 1997, 41, 116.
16 F. Mayer and W. Krieger, Ber., 1922, 55B, 1659; L. N. Borisova,
S. G. Rozenberg, N. F. Kucherova and V. A. Zagorevskii,
Chem. Heterocycl. Compd. (Eng. Transl.), 1981, 17, 869.
Scheme 3 Reactions of 16 after treatment with SmI2–H2O–amine.
K2CO3 (6.2 g, 45 mmol) in DMF (50 ml) stirred under a nitro-
gen atmosphere. Allyl bromide (1.6 ml, 18 mmol) was added
slowly by syringe and the mixture was stirred overnight. Water
(50 ml) was added and the solution was extracted with n-hexane
(4 × 50 ml). The combined organic layer was washed with
water (3 × 50 ml), 10% KOH (2 × 50 ml), Na2S2O3 (50 ml) and
brine (50 ml), dried over MgSO4, filtered and concentrated.
Distillation under vacuum gave 1 as colourless oil (90–100%
yield).
1: 1H NMR (400 MHz, CDCl3) δ 4.60 (d, 2H), 5.30 (d, 1H),
5.50 (d, 2H), 6.06 (m, 1H), 6.68 (t, 1H), 6.79 (d, 1H), 7.24
(t, 1H), 7.76 (d, 1H). MS (EI) m/z 260 (Mϩ), 130, 102.
SmI2–H2O–amine mediated reaction
In a standard procedure, 5 ml SmI2 in THF (0.5 mmol,
2.5 equiv.) was added to a dry Schlenk tube, containing a mag-
netic stirrer bar and fitted with a septum, inside a glove box
under nitrogen atmosphere. The amine (1.5 mmol, 7.5 equiv.
Et3N) and the substrate 1 (0.2 mmol, 1 equiv.) were added
under stirring. To this mixture the proton donor, i.e. H2O (6.25
equiv.), was added slowly at 20.0 ЊC. The reaction was finished
in less than one minute. To 0.2 ml of the quenched solution was
added diethyl ether (1 ml) and HCl (0.1 ml, 0.12 M), or KOH
(10%) for products containing nitrogen, to remove the
inorganic salts and finally saturated Na2S2O3 (5 dr) to remove
excess iodine. The clear organic layer was transferred to a vial
and analysed on GC and GC/MS. Evaporated samples were
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 2 4 2 3 – 2 4 2 6
2426