D. Harris, R. L. Dorow, B. R. P. Stone, R. L. Parsons Jr., J. A. Pesti, N.
A. Magnus, J. M. Fortunak, P. N. Confalone and W. A. Nugent, Org.
Lett., 2000, 2, 3119.
5 For a very recent review, see: W.-J. Yoo, L. Zhao and C.-J. Li, Aldrichi-
mica Acta, 2011, 44, 43.
aldehydes (Scheme 2, compounds 7–17). A distinctive feature
of this protocol is that, in contrast to other (NHC)–Ag(I)
systems,10,11 the use of complex 6 allows for the coupling of
unactivated aryl aldehydes at room temperature, albeit requiring
much longer reaction times (Scheme 2, compounds 18–22).
These reaction times can be decreased considerably by increas-
ing the temperature and/or the catalyst loading.
In summary, we have developed a general (NHC)–Ag(I) cata-
lyzed protocol for the A3 coupling of unactivated alkyl and aryl
aldehydes, at room temperature and using low catalyst loadings.
Studies on expanding the scope of the reaction and the develop-
ment of an enantioselective protocol are currently ongoing in
our labs.
6 C. Wei, Z. Li and C.-J. Li, Org. Lett., 2003, 5, 4473.
7 X. Yao and C.-J. Li, Org. Lett., 2005, 7, 4395.
8 In that report there is one reaction carried out at room temperature invol-
ving the coupling of p-trifluoromethylbenzaldehyde and phenylacetylene,
and using twice as much catalyst loading (10 mol%).
9 Heterocyclic Carbenes in Transition Metals Catalysis and Organocataly-
sis, ed. C. S. J. Cazin, Springer, London, 2010; N-Heterocyclic Carbenes
in Transition Metal Catalysis, ed. F. Glorius, Springer, Berlin, 2007.
10 Y. Li, X. Chen, Y. Song, L. Fang and G. Zou, Dalton Trans., 2011, 40,
2046.
11 P. Li, L. Wang, Y. Zhang and M. Wang, Tetrahedron Lett., 2008, 49,
6650.
12 T. Ramnial, C. D. Abernethy, M. D. Spicer, I. D. McKenzie, I. D. Gay
and J. A. C. Clyburne, Inorg. Chem., 2003, 42, 1391; P. de Frémont,
N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody,
C. L. B. Macdonald, J. A. C. Clyburne, C. D. Abernethy and S. P. Nolan,
Organometallics, 2005, 24, 6301; D. Partyka and N. Deligonul, Inorg.
Chem., 2009, 48, 9463; D. V. Partyka, T. J. Robilotto, J. B. Updegraff III,
M. Zeller, A. D. Hunter and T. G. Gray, Organometallics, 2009, 28, 795;
C. A. Citadelle, E. L. Nouy, F. Bisaro, A. M. Z. Slawin and
C. S. J. Cazin, Dalton Trans., 2010, 39, 4489.
13 To the best of our knowledge there are not any reported crystal structures
of (NHC)Ag(OAc) complexes, which would allow us to make a true
comparison with the halide-bearing counterparts to explain the higher
reactivity of 6. The crystal structure of the analogous (SIPr)Cu(OAc)
suggests a more accessible metal centre when compared to (SIPr)CuCl:
L. A. Goj, E. D. Blue, S. A. Delp, T. B. Gunnoe, T. R. Cundari and
J. L. Petersen, Organometallics, 2006, 25, 4097.
Acknowledgements
The authors acknowledge the National Science Foundation
(CHE 0924324) for support.
References
1 S. Sakaguchi, T. Kubo and Y. Ishii, Angew. Chem., Int. Ed., 2001, 40,
2534.
2 C. Fisher and E. M. Carreira, Org. Lett., 2001, 3, 4319.
3 C.-J. Li and C. Wei, Chem. Commun., 2002, 268.
4 T. Naota, H. Takaya and S. I. Murahashi, Chem. Rev., 1998, 98, 2599;
G. Dyker, Angew. Chem., Int. Ed., 1999, 38, 1698; G. S. Kauffman, G.
2208 | Org. Biomol. Chem., 2012, 10, 2206–2208
This journal is © The Royal Society of Chemistry 2012